Sources/Lexikon/Variationsmethoden

Aus numpedia
Zur Navigation springen Zur Suche springen

Die Definition sagt: wir erhalten die Variation der Formänderungsenergie,eines Körpers, indem wir dessen Verschiebungszustand u um ein ε ∙ δu mit ε≪1 variieren und dann den Gradienten nach ε für ε=0 ermitteln.

Für eine linear-elastische Feder der Steifigkeit k, die um u gelängt wird, ist

Dann finden wir

Bei Koordinaten, die wie in Aufgabe Kw24 über Zwangsbedingungen der Form

gekoppelt sind, müssen wir oft die Variation nach den Minimalkoordinate - hier φ - durchführen. Das geschieht - so wie oben durch

.