Sources/Anleitungen/FEM-Formulierung für den Euler-Bernoulli-Balken
< Sources | Anleitungen
Diese Seite fasst die wichtigsten Ergebnisse für die FEM-Formulierung zum Euler-Bernoulli-Balken zusammen.
Koordinaten
Die Koordinaten eines Finiten Elements sind
- .
Der Ansatz für die Näherung der Auslenkung w(x,t) ist
Die Drehwinkel sind hier so gewählt, dass
- .

Trialfunctions
Die einzelnen Trial-Functions sind:
linker Rand (Knoten "i-1") | rechter Rand (Knoten "i") |
---|---|
![]() | ![]() |
![]() | ![]() |
Faltungsintegrale
... für die symmetrische Massenmatrix
Tabelliert sind die Werte der Integrale
symm. |
... für die symmetrische Steifigkeitsmatrix
Tabelliert sind die Werte der Integrale
symm. |
... für die rechte Seite des Gleichungssystems - aus äußeren, einprägten Lasten wie z.B. Streckenlasten q0∙ψ
Die virutelle Arbeit dieser äußeren Streckenlast ist
Hier stehen die Faltungsintegrale beispielhaft für
Werte von | ||||
---|---|---|---|---|
![]() | ||||
![]() | ||||
![]() | ||||
![]() |
Maxima-Code für die Berechnung der Element-Matrizen
Hier finden Sie den Sourcecode für die Herleitung der Element-Matrizen.
Maxima-Code für die Berechnung der "Rechten-Seite"
Hier finden Sie den Sourcecode für die Herleitung der Spalten-Matrizen der Rechten-Seite des Gleichungssystems.
Virtuelle Arbeiten
... der D'Alembert'sche Trägheitskräfte eines Finiten Elements
sind
... der Formänderungsenergie eines Finiten Elements
sind
- .
⚠ Drehrichtung der Koordinate : |
Die Drehung in diesem Modell ist entgegen der Rotation um die y-Achse definiert. Ein anderer Drehsinn führt zu anderen Vorzeichen in den System-Matrizen. |
Links
- ...
Literature
- ...