Die Bewegung des Dehnstabes wird durch das Zusammenspiel von elastischen Verformungen und Trägheitskräften bestimmt. Man nennt das "Schwingungen von Kontinua" - diese untersuchen wir hier. Der zentrale Aufgabe besteht in der Berechnung der homogenen Lösung - und der Anpassung der Lösungsanteile an die Anfangsbedingungen.
Caption
Gesucht ist analytische Lösung für Schwingungen des Euler-Bernoulli-Balkens beim Loslassen aus der enspannten Ruhelage.
Lösung mit Maxima
Header
Für die mathematische Behandlung - insbesondere der Auflösung quadratischer Gleichungen - setzen wir in Maxima voraus, dass
In der Gleichgewichtsbeziehung für den Dehnstab setzen wir als eingeprägte, äußere Streckenlast n(x,t) die D'Alembert'sche Trägheitskraft und die Gewichtskraft an, also
Die Lösung der partiellen Bewegungsgleichung
setzt sich dann aus zwei Lösungsanteilen, der partikularen Lösung up und der homogenen Lösung uh, zusammen; wir schreiben
zu, die alle Rand- und Anfangsbedingungen erfüllen. Eigentlich müsste hier ein -Ansatz stehen, beim dem auch U komplex wäre. Mit etwas Erfahrung dürfen wir es uns hier einfacher machen.
Einsetzten unseres speziellen Ansatzes liefert
.
Die Anpassung an die Randbedingungen
gestaltet sich einfach: unser besonderer Ansatz erfüllt bereits die erste Randbedingung (sin(0)=0), die zweite Randbedingung cos(κl)=0 ist erfüllt, wenn
,
wir bekommen für jedes i eine Lösung, also unendlich viele.
Zu jedem κ gehört eine Eigenkreisfrequenzen
.
Die unterste Eigenfrequenz nutzen wir, um eine Bewegungsgleichungen dimensionslos zu machen: die längste Schwingungsperiode ist damit die Bezugs-Zeit
Die Lösungen
mit Ihren Modal-Formen ϕi und Eigenkreisfreuquenzen ω0,i sind hier aufgetragen.
gelten. Das kriegen wir hin, indem wir die (unendlich vielen) Ui der homogenen Lösung passend wählend. Das klingt komplizierter als es ist - die Mathematik bereitet uns den Weg.
⚠Spezieller Lösungsansatz:
Wir können unseren speziellen Lösungsansatz mit übrigens nur deshalb an die Anfangsbedingungen anpassen, weil die Anfangsgeschwindigkeit des Stabes Null ist - das liefert der cos. Für eine von Null verschiedene Anfangsgeschwindigkeit bräuchten wir den sin-Anteil der Lösung.
Die Beziehung oben multiplizieren wir mit einer der Modalformen ϕk und bilden das Integral über die Balken-Lange ℓ, also
.
Wir projizieren also die Modalformen auf sich selbst und auf die partikulare Lösung. Und nutzen aus, dass diese Faltungs-Integrale der Modalformen eine besondere Eigenschaft haben:
Man sagt: die Funktionen sind zueinander verallgemeinert orthogonal. Damit berechnen wir
,
Animation: Loslassen des Systems aus der unverformten Rugelage.
Anhand der numerischen Werte der Koeffizienten
sehen wir, dass nur die erste Modalform einen signifikanten Beitrag bei der Anpassung an die Anfangsbedingungen liefert. Wir nehmen bei der Auftragung der Gesamtlösung wt(x,t) trotzdem die ersten sechs Modalformen mit:
In der Animation sehen Sie das Loslassen des Stabes aus der unverformten, geraden Referenzlage für genau eine Periodenlänge T1 der ersten Modalform. Die Schwingung, die entsteht ist T1-periodisch - die anderen Modalformen leisten einen (kleinen) Beitrag, dessen Schwingungsperiode genau ein Vielfaches der Grundschwingung ist - die Darstellung der aneinandergestückelten Lösungen geht "ruckfrei" nach einer Periode ineinander über.
Cookies helfen uns bei der Bereitstellung von numpedia. Durch die Nutzung von numpedia erklärst du dich damit einverstanden, dass wir Cookies speichern.