Aufgabenstellung
SOME TEXT
Caption
Gesucht ist "SOME EXPLANATION"
Lösung mit Maxima
Lorem Ipsum ....
Q ~ _ = ( W 0 Φ 0 W 1 Φ 1 W 2 Φ 2 , Ψ 1 , Ψ 2 )
δ Q ~ _ = ( δ W 0 δ Φ 0 δ W 1 δ Φ 1 δ W 2 δ Φ 2 , δ Ψ 1 , δ Ψ 2 )
Y _ = [ Q _ Q ˙ _ ]
Y ˙ _ = f _ ( Y _ ) = [ Q ˙ _ − M _ _ − 1 ⋅ K _ _ ⋅ Q _ + M _ _ − 1 ⋅ P _ ]
M _ _ ⋅ Q ¨ _ + K _ _ ⋅ Q _ = P _ ( Q _ , Q ˙ _ )
δ W = δ W a − δ Π = ! 0
δ Π = δ Π G + δ Π S
δ Π S = K S ⋅ ( Ψ 2 − Ψ 1 ) ⋅ ( δ Ψ 2 − δ Ψ 1 )
δ Π G = δ Π G 1 + δ Π G 2
δ Π G i = ∫ 0 ℓ i M i ( x ) ⋅ δ w i ″ ( x ) d x
M i ( x ) = E ⋅ I ( x ) ⋅ w i ″ ( x )
w i ( x ) = Q _ i T ⋅ φ _
φ _ = [ ( ξ − 1 ) 2 ⋅ ( 2 ⋅ ξ + 1 ) ℓ i ⋅ ξ ⋅ ( ξ − 1 ) 2 − ξ 2 ⋅ ( 2 ξ − 3 ) ℓ i ⋅ ξ 2 ⋅ ( ξ − 1 ) ]
Q ~ _ i = ( W i − 1 Φ i − q W i Φ i )
δ Π G i = ∫ 0 ℓ i E ⋅ I i ( x ) ⋅ ( W i − 1 φ 1 ⋅ δ W i − 1 φ 1 + Φ i − 1 φ 2 ⋅ δ W i − 1 φ 1 + W i φ 3 ⋅ δ W i − 1 φ 1 + … + Φ i φ 4 ⋅ δ Φ i φ 4 )
δ Π G i = δ Q i T ⋅ K _ _ i ⋅ Q i
k i , j k = ∫ 0 ℓ i E ⋅ I i ( x ) φ j ⋅ φ k d x
I i ( x ) = π 6 4 ( D i ( x ) 4 − d i ( x ) 4 )
D i ( x ) = D i − 1 ⋅ ( ξ 1 − 1 ) + D i ⋅ ξ 1 d i ( x ) = d i − 1 ⋅ ( ξ 1 − 1 ) + d i ⋅ ξ 1
ξ 1 = x ℓ 1
ξ 2 = ( x − H ) ℓ 2
K _ _ = ( k 1 , 1 1 k 1 , 1 2 k 1 , 1 3 k 1 , 1 4 0 0 0 0 k 1 , 1 2 k 1 , 2 2 k 1 , 2 3 k 1 , 2 4 0 0 0 0 k 1 , 1 3 k 1 , 2 3 k 1 , 3 3 + k 2 , 1 1 k 1 , 3 4 + k 2 , 1 2 k 2 , 1 3 k 2 , 1 4 0 0 k 1 , 1 4 k 1 , 2 4 k 1 , 3 4 + k 2 , 1 2 k 1 , 4 4 + k 2 , 2 2 k 2 , 2 3 k 2 , 2 4 0 0 0 0 k 2 , 1 3 k 2 , 2 3 k 2 , 3 3 k 2 , 3 4 0 0 0 0 k 2 , 1 4 k 2 , 2 4 k 2 , 3 4 k 2 , 4 4 0 0 0 0 0 0 0 0 K S − K S 0 0 0 0 0 0 − K S K S )
r _ B , 1 = ( H − h − b ⋅ sin ( Φ 1 ( t ) ) − v 0 t + W 1 ( t ) + b ⋅ cos ( Φ 1 ( t ) ) )
r _ B , 2 = ( H − r 2 ⋅ cos ( Ω t + Ψ 2 ( t ) + Θ 2 ) − v 0 t + W 2 ( t ) − r 2 ⋅ sin ( Ω t + Ψ 2 ( t ) + Θ 2 ) )
r _ A = ( H − R 1 ⋅ cos ( Ω t + Ψ 1 ( t ) + Θ 1 ) − v 0 t + W 1 ( t ) − R 1 ⋅ sin ( Ω t + Ψ 1 ( t ) + Θ 1 ) )
v _ B , r e l = r ˙ _ B , 1 − r ˙ _ B , 2
( . ) ˙ : = d ( . ) d t
δ W a = δ W A a + δ W B a + δ W d ′ A l e m b e r t a
δ r B , 1 = ( − δ Φ 1 b δ W 1 )
δ r B 2 = ( r 2 ⋅ δ Ψ 2 sin ( ψ ) δ W 2 − r 2 ⋅ δ Ψ 2 cos ( ψ ) )
δ r A = ( 0 δ W 2 + R 1 ⋅ δ Ψ 1 )
δ W A a =
tmp
Title
Text
Links
Literature