Gelöste Aufgaben/StaF

Aus numpedia
Zur Navigation springen Zur Suche springen


Aufgabenstellung

SOME TEXT


Caption

Gesucht ist "SOME EXPLANATION"


Lösung mit Maxima

Lorem Ipsum ....

(2A2Eη300(2A2Eη02)0A2Eη3000002A2Eη30(A2Eη402)(3A2Eη402)A2Eη60(A2Eη202)0A2Eη60(2A2Eη02)(A2Eη402)A2Eη+302AE203+8A2Eη030(2A2Eη02)(A2Eη+302AE403)3A2Eη302AE403A2Eη4020(3A2Eη402)03A2Eη+02AE203+2AE0(3A2Eη202)3A2Eη302AE403(3A2Eη+02AE403)(3A2Eη402)A2Eη30A2Eη60(2A2Eη02)(3A2Eη202)4A2Eη30(A2Eη402)3A2Eη402A2Eη600(A2Eη202)(A2Eη+302AE403)3A2Eη302AE403(A2Eη402)A2Eη+302AE403+A2Eη03(3A2Eη302AE403)(3A2Eη402)003A2Eη302AE403(3A2Eη+02AE403)3A2Eη402(3A2Eη302AE403)3A2Eη+02AE403+AE03A2Eη4020A2Eη60A2Eη402(3A2Eη402)A2Eη60(3A2Eη402)3A2Eη4022A2Eη30)(W1,0U1,0Φ1,0W2,0U2,0Φ2,0W3,0U3,0Φ3,0W4,0U4,0Φ4,0)=(00000F00)

Fehler beim Parsen (Syntaxfehler): {\displaystyle </math ==tmp== <!--------------------------------------------------------------------------------> {{MyCodeBlock|title=Title |text=Text |code= <syntaxhighlight lang="lisp" line start=1> 1+1 </syntaxhighlight> }} <table class="wikitable mw-collapsible" style="background-color:white; float: none; margin-right:14px;"> <tr><th>Element #1</th></tr> <!-------------------------------------------> <tr><td> <math> {k_1} = \begin{pmatrix}\frac{8 {{A}^{2}} E \eta }{{\ell_{0}^{3}}} & 0 & \frac{2 {{A}^{2}} E \eta }{{\ell_{0}^{2}}} & -\left( \frac{8 {{A}^{2}} E \eta }{{\ell_{0}^{3}}}\right) & 0 & \frac{2 {{A}^{2}} E \eta }{{\ell_{0}^{2}}}\\ 0 & \frac{2 A E}{{\ell_0}} & 0 & 0 & -\left( \frac{2 A E}{{\ell_0}}\right) & 0\\ \frac{2 {{A}^{2}} E \eta }{{\ell_{0}^{2}}} & 0 & \frac{2 {{A}^{2}} E \eta }{3 {\ell_0}} & -\left( \frac{2 {{A}^{2}} E \eta }{{\ell_{0}^{2}}}\right) & 0 & \frac{{{A}^{2}} E \eta }{3 {\ell_0}}\\ -\left( \frac{8 {{A}^{2}} E \eta }{{\ell_{0}^{3}}}\right) & 0 & -\left( \frac{2 {{A}^{2}} E \eta }{{\ell_{0}^{2}}}\right) & \frac{8 {{A}^{2}} E \eta }{{\ell_{0}^{3}}} & 0 & -\left( \frac{2 {{A}^{2}} E \eta }{{\ell_{0}^{2}}}\right) \\ 0 & -\left( \frac{2 A E}{{\ell_0}}\right) & 0 & 0 & \frac{2 A E}{{\ell_0}} & 0\\ \frac{2 {{A}^{2}} E \eta }{{\ell_{0}^{2}}} & 0 & \frac{{{A}^{2}} E \eta }{3 {\ell_0}} & -\left( \frac{2 {{A}^{2}} E \eta }{{\ell_{0}^{2}}}\right) & 0 & \frac{2 {{A}^{2}} E \eta }{3 {\ell_0}}\end{pmatrix} }

Element #2

Element #3

Element #1


Links

  • ...

Literature

  • ...