Aufgabenstellung
SOME TEXT
Caption
Gesucht ist "SOME EXPLANATION"
Lösung mit Maxima
Lorem Ipsum ....
(
2
A
2
E
η
3
ℓ
0
0
−
(
2
A
2
E
η
ℓ
0
2
)
0
A
2
E
η
3
ℓ
0
0
0
0
0
2
A
2
E
η
3
ℓ
0
−
(
A
2
E
η
4
ℓ
0
2
)
−
(
3
A
2
E
η
4
ℓ
0
2
)
A
2
E
η
6
ℓ
0
−
(
A
2
E
η
2
ℓ
0
2
)
0
A
2
E
η
6
ℓ
0
−
(
2
A
2
E
η
ℓ
0
2
)
−
(
A
2
E
η
4
ℓ
0
2
)
A
2
E
η
+
3
ℓ
0
2
A
E
2
ℓ
0
3
+
8
A
2
E
η
ℓ
0
3
0
−
(
2
A
2
E
η
ℓ
0
2
)
−
(
A
2
E
η
+
3
ℓ
0
2
A
E
4
ℓ
0
3
)
3
A
2
E
η
−
3
ℓ
0
2
A
E
4
ℓ
0
3
A
2
E
η
4
ℓ
0
2
0
−
(
3
A
2
E
η
4
ℓ
0
2
)
0
3
A
2
E
η
+
ℓ
0
2
A
E
2
ℓ
0
3
+
2
A
E
ℓ
0
−
(
3
A
2
E
η
2
ℓ
0
2
)
3
A
2
E
η
−
3
ℓ
0
2
A
E
4
ℓ
0
3
−
(
3
A
2
E
η
+
ℓ
0
2
A
E
4
ℓ
0
3
)
−
(
3
A
2
E
η
4
ℓ
0
2
)
A
2
E
η
3
ℓ
0
A
2
E
η
6
ℓ
0
−
(
2
A
2
E
η
ℓ
0
2
)
−
(
3
A
2
E
η
2
ℓ
0
2
)
4
A
2
E
η
3
ℓ
0
−
(
A
2
E
η
4
ℓ
0
2
)
3
A
2
E
η
4
ℓ
0
2
A
2
E
η
6
ℓ
0
0
−
(
A
2
E
η
2
ℓ
0
2
)
−
(
A
2
E
η
+
3
ℓ
0
2
A
E
4
ℓ
0
3
)
3
A
2
E
η
−
3
ℓ
0
2
A
E
4
ℓ
0
3
−
(
A
2
E
η
4
ℓ
0
2
)
A
2
E
η
+
3
ℓ
0
2
A
E
4
ℓ
0
3
+
A
2
E
η
ℓ
0
3
−
(
3
A
2
E
η
−
3
ℓ
0
2
A
E
4
ℓ
0
3
)
−
(
3
A
2
E
η
4
ℓ
0
2
)
0
0
3
A
2
E
η
−
3
ℓ
0
2
A
E
4
ℓ
0
3
−
(
3
A
2
E
η
+
ℓ
0
2
A
E
4
ℓ
0
3
)
3
A
2
E
η
4
ℓ
0
2
−
(
3
A
2
E
η
−
3
ℓ
0
2
A
E
4
ℓ
0
3
)
3
A
2
E
η
+
ℓ
0
2
A
E
4
ℓ
0
3
+
A
E
ℓ
0
3
A
2
E
η
4
ℓ
0
2
0
A
2
E
η
6
ℓ
0
A
2
E
η
4
ℓ
0
2
−
(
3
A
2
E
η
4
ℓ
0
2
)
A
2
E
η
6
ℓ
0
−
(
3
A
2
E
η
4
ℓ
0
2
)
3
A
2
E
η
4
ℓ
0
2
2
A
2
E
η
3
ℓ
0
)
⋅
(
W
1
,
0
U
1
,
0
Φ
1
,
0
W
2
,
0
U
2
,
0
Φ
2
,
0
W
3
,
0
U
3
,
0
Φ
3
,
0
W
4
,
0
U
4
,
0
Φ
4
,
0
)
=
(
0
0
0
0
0
F
0
0
)
{\displaystyle {\begin{pmatrix}{\frac {2{{A}^{2}}E\eta }{3{\ell _{0}}}}&0&-\left({\frac {2{{A}^{2}}E\eta }{{\ell }_{0}^{2}}}\right)&0&{\frac {{{A}^{2}}E\eta }{3{\ell _{0}}}}&0&0&0\\0&{\frac {2{{A}^{2}}E\eta }{3{\ell _{0}}}}&-\left({\frac {{{A}^{2}}E\eta }{4{{\ell }_{0}^{2}}}}\right)&-\left({\frac {{\sqrt {3}}{{A}^{2}}E\eta }{4{{\ell }_{0}^{2}}}}\right)&{\frac {{{A}^{2}}E\eta }{6{\ell _{0}}}}&-\left({\frac {{{A}^{2}}E\eta }{2{{\ell }_{0}^{2}}}}\right)&0&{\frac {{{A}^{2}}E\eta }{6{\ell _{0}}}}\\-\left({\frac {2{{A}^{2}}E\eta }{{\ell }_{0}^{2}}}\right)&-\left({\frac {{{A}^{2}}E\eta }{4{{\ell }_{0}^{2}}}}\right)&{\frac {{{A}^{2}}E\eta +3{{\ell }_{0}^{2}}AE}{2{{\ell }_{0}^{3}}}}+{\frac {8{{A}^{2}}E\eta }{{\ell }_{0}^{3}}}&0&-\left({\frac {2{{A}^{2}}E\eta }{{\ell }_{0}^{2}}}\right)&-\left({\frac {{{A}^{2}}E\eta +3{{\ell }_{0}^{2}}AE}{4{{\ell }_{0}^{3}}}}\right)&{\frac {{\sqrt {3}}{{A}^{2}}E\eta -{\sqrt {3}}{{\ell }_{0}^{2}}AE}{4{{\ell }_{0}^{3}}}}&{\frac {{{A}^{2}}E\eta }{4{{\ell }_{0}^{2}}}}\\0&-\left({\frac {{\sqrt {3}}{{A}^{2}}E\eta }{4{{\ell }_{0}^{2}}}}\right)&0&{\frac {3{{A}^{2}}E\eta +{{\ell }_{0}^{2}}AE}{2{{\ell }_{0}^{3}}}}+{\frac {2AE}{\ell _{0}}}&-\left({\frac {{\sqrt {3}}{{A}^{2}}E\eta }{2{{\ell }_{0}^{2}}}}\right)&{\frac {{\sqrt {3}}{{A}^{2}}E\eta -{\sqrt {3}}{{\ell }_{0}^{2}}AE}{4{{\ell }_{0}^{3}}}}&-\left({\frac {3{{A}^{2}}E\eta +{{\ell }_{0}^{2}}AE}{4{{\ell }_{0}^{3}}}}\right)&-\left({\frac {{\sqrt {3}}{{A}^{2}}E\eta }{4{{\ell }_{0}^{2}}}}\right)\\{\frac {{{A}^{2}}E\eta }{3{\ell _{0}}}}&{\frac {{{A}^{2}}E\eta }{6{\ell _{0}}}}&-\left({\frac {2{{A}^{2}}E\eta }{{\ell }_{0}^{2}}}\right)&-\left({\frac {{\sqrt {3}}{{A}^{2}}E\eta }{2{{\ell }_{0}^{2}}}}\right)&{\frac {4{{A}^{2}}E\eta }{3{\ell _{0}}}}&-\left({\frac {{{A}^{2}}E\eta }{4{{\ell }_{0}^{2}}}}\right)&{\frac {{\sqrt {3}}{{A}^{2}}E\eta }{4{{\ell }_{0}^{2}}}}&{\frac {{{A}^{2}}E\eta }{6{\ell _{0}}}}\\0&-\left({\frac {{{A}^{2}}E\eta }{2{{\ell }_{0}^{2}}}}\right)&-\left({\frac {{{A}^{2}}E\eta +3{{\ell }_{0}^{2}}AE}{4{{\ell }_{0}^{3}}}}\right)&{\frac {{\sqrt {3}}{{A}^{2}}E\eta -{\sqrt {3}}{{\ell }_{0}^{2}}AE}{4{{\ell }_{0}^{3}}}}&-\left({\frac {{{A}^{2}}E\eta }{4{{\ell }_{0}^{2}}}}\right)&{\frac {{{A}^{2}}E\eta +3{{\ell }_{0}^{2}}AE}{4{{\ell }_{0}^{3}}}}+{\frac {{{A}^{2}}E\eta }{{\ell }_{0}^{3}}}&-\left({\frac {{\sqrt {3}}{{A}^{2}}E\eta -{\sqrt {3}}{{\ell }_{0}^{2}}AE}{4{{\ell }_{0}^{3}}}}\right)&-\left({\frac {3{{A}^{2}}E\eta }{4{{\ell }_{0}^{2}}}}\right)\\0&0&{\frac {{\sqrt {3}}{{A}^{2}}E\eta -{\sqrt {3}}{{\ell }_{0}^{2}}AE}{4{{\ell }_{0}^{3}}}}&-\left({\frac {3{{A}^{2}}E\eta +{{\ell }_{0}^{2}}AE}{4{{\ell }_{0}^{3}}}}\right)&{\frac {{\sqrt {3}}{{A}^{2}}E\eta }{4{{\ell }_{0}^{2}}}}&-\left({\frac {{\sqrt {3}}{{A}^{2}}E\eta -{\sqrt {3}}{{\ell }_{0}^{2}}AE}{4{{\ell }_{0}^{3}}}}\right)&{\frac {3{{A}^{2}}E\eta +{{\ell }_{0}^{2}}AE}{4{{\ell }_{0}^{3}}}}+{\frac {AE}{\ell _{0}}}&{\frac {{\sqrt {3}}{{A}^{2}}E\eta }{4{{\ell }_{0}^{2}}}}\\0&{\frac {{{A}^{2}}E\eta }{6{\ell _{0}}}}&{\frac {{{A}^{2}}E\eta }{4{{\ell }_{0}^{2}}}}&-\left({\frac {{\sqrt {3}}{{A}^{2}}E\eta }{4{{\ell }_{0}^{2}}}}\right)&{\frac {{{A}^{2}}E\eta }{6{\ell _{0}}}}&-\left({\frac {3{{A}^{2}}E\eta }{4{{\ell }_{0}^{2}}}}\right)&{\frac {{\sqrt {3}}{{A}^{2}}E\eta }{4{{\ell }_{0}^{2}}}}&{\frac {2{{A}^{2}}E\eta }{3{\ell _{0}}}}\end{pmatrix}}\cdot {\begin{pmatrix}{W_{1,0}}\\{U_{1,0}}\\{{\Phi }_{1,0}}\\{W_{2,0}}\\{U_{2,0}}\\{{\Phi }_{2,0}}\\{W_{3,0}}\\{U_{3,0}}\\{{\Phi }_{3,0}}\\{W_{4,0}}\\{U_{4,0}}\\{{\Phi }_{4,0}}\end{pmatrix}}={\begin{pmatrix}0\\0\\0\\0\\0\\F\\0\\0\end{pmatrix}}}
<math>
</math
tmp
Title
Text
Links
Literature