Gelöste Aufgaben/Kita

Aus numpedia
Zur Navigation springen Zur Suche springen


Aufgabenstellung

Lageplan

Das skizzierte System ist ein Mast unter einer linear veränderlichen Windlast, der durch drei gleichmäßig über den Umfang verteilten Stäbe abgestützt wird.

Gesucht ist die analytische Lösung für ein Euler-Bernoulli-Modell des elastischen Mastes und der drei Dehnstäbe.

Sicht auf den Mast

Der Mast steht senkrecht dabei auf einer ebenen Unterlage mit dem festen Gelenklager „O“ und ist durch drei Stäbe abgestützt. Alle Stäbe sind in Punkt „H“ mit dem Mast verbunden und in den Punkten „A“, „B“ und „C“ gelenkig gelagert. Die Lager A, B und C sind gleichmäßig in einem Radius von R um O herum auf der Unterlage verteilt. Die Windlast hat den Maximalwert qT und wirkt in der Ebene, die durch die Punkte A, O und H aufgespannt werden. Für die Geometrie des Masts gilt h1 = 2 h2, h2 = √2 R, außerdem sei die Dehnsteifigkeiten der Stäbe E A2=2 E A1,E A3=E A1.

Mastpril-Querschnitt

Der Mast hat ein zylindrisches Profil mit Innen- und Außendurchmesser di, da.

Ein Knicken der drei Stäbe sei ausgeschlossen.

Lösung mit Maxima

Mit Maxima berechnen wir die allgemeine Lösung der Differentialgleichung des Euler-Bernoulli-Balkens und geben die Rand- und Übergangsbedingungen an. Der Mast soll in Längsrichtung nicht signifikant durch die Stabkräfte verformt werden, als Koordinaten der Verschiebung haben hier also nur die Auslenkungen Querrichtung sowie die Verdrehungen um diese Koordinatenrichtungen. Die Stabkräfte berechnen wir aus der Längung der Stäbe, dabei linearisieren wir bezüglich der Mast-Auslenkungen.

Header

Kern der Lösung ist die Berechnung der Integrationskonstanten des Euler-Bernoulli-Balkens. In diesem Beispiel führen wir zusätzliche Konstanten ein, um die Rand- und Übergangsbedingungen einfacher formulieren zu können.


/*******************************************************/
/* MAXIMA script                                       */
/* version: wxMaxima 21.05.2                           */
/* author: Andreas Baumgart                            */
/* last updated: 2022-08-19                            */
/* ref: NMM, Labor 1                                   */
/* Mast unter linear-veränderlicher Windlast           */
/*                                                     */
/*******************************************************/



Declarations

Wir übernehmen die Parameter aus der Aufgabenstellung, also

und definieren für die Berechnung der Stabkräfte die Referenzorte von A, B, C und H wie skizziert im x, y, z Koordinatensystem zu

Die Koordinaten der Vektoren, die jeweils in Stablängsrichtung von H zu den Lagerpunkten zeigen, sind dann

die Referenz-Länge aller drei Stäbe ist damit

.

Und wir schreiben damit die Koordinaten der Einheitsvektoren dieser Stab-Längsrichtungen als

.

/*******************************************************/
/* declarations                                        */
/* *****************************************************/

/* parameter selection */
params: [EA[2]=2*EA[1],EA[3]=EA[1], h[1] = 2*h[2], h[2]=sqrt(2)*R, EA[1] = α*EI/R^2];
assume(R>0);
  
/* non-sclar variables */
declare(r,nonscalar,
        e,nonscalar);

/* geometry           **********************************/
/* points */
geo: [r[H] = matrix([ h[1], 0, 0]),
      r[A] = matrix([   0 , R*sin(    0   ),-R*cos(    0   )]),
      r[B] = matrix([   0 , R*sin(-2*%pi/3),-R*cos(-2*%pi/3)]),
      r[C] = matrix([   0 , R*sin(+2*%pi/3),-R*cos(+2*%pi/3)])];
geo: append(geo, subst(geo, [r[1] = r[A]-r[H],
                             r[2] = r[B]-r[H],
                             r[3] = r[C]-r[H]]));
geo: append(geo, [L = sqrt(subst(geo,r[1]).subst(geo,r[1]))]);
/* unit-vecotor coefficients */
geo: append(geo, makelist(e[i]=subst(geo,r[i]/L),i,1,3));




Integration Of Differential Equation for Euler-Bernoulli-Beam

In den Bereichen I und II haben wir jeweils eine Auslenkung des Masts in zwei Richtungen.

Wir nutzen die Standard-Nomenklatur für den Euler-Bernoulli-Balken und schrieben jeweils die Gleichgewichtsbedingungen

... in z-Richtung als ... in y-Richtung als
::. ::.

Für die Auslenkungen in z und y-Richtung geben wir hier die Bedeutung der Koordinaten v_i(x), w_i(x) je Bereich und deren Ableitungen an. Es ist

... die Querschnitts-Auslenkung:
... die Querschnitts-Verdrehung: c_{i}(x)
... das Biege-Moment: Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{y,i}(x)=-EI{\frac{\displaystyle d^{2}\,w_{i}(x)}{\displaystyle d\,x^{2}}}
... die Querkraft: Fehler beim Parsen (Syntaxfehler): {\displaystyle Q_{z,i}(x)=-EI{\frac{\displaystyle d^{3}\,w_{i}(x)}{\displaystyle d\,x^{3}}}



CODE




Forces in Supporting Rods

TEXT


CODE




Boundary- and Transition-Conditions

TEXT


... aus Rand O

... aus Übergang H

... aus Rand T


CODE




Solving

TEXT


CODE




Post-Processing

TEXT


CODE





Links

  • ...

Literature

  • ...