Sources/Lexikon/Kugelkoordinaten
In Kugelkoordinaten oder räumlichen Polarkoordinaten wird ein Punkt P im dreidimensionalen Raum durch seinen Abstand vom Ursprung und zwei Winkel angegeben.

So ist der Vektor vom Ursprung zum Punkt P
mit
- .
Die Kugelkoordinaten kann man - ähnlich wie bei den Euler-Winkeln -zur Definition eines neuen, lokalen Koordinatensystems nutzen. Neben dem Flächen-Normalenvektor spannen dabei die Tangentialvektoren zu φ1 und φ2 eine neue Basis auf.

Die Koordinatentransformation erfolgt über
mit der Transformationsmatrix
Umrechnen von Euler-Winkel in Kugel-Koordinaten
Oft kann man räumliche Polarkoordinaten anschaulicher interpretieren als Euler-Winkel. Polarkoordinaten können allerdings zu Singularitäten führen wie in GYRQ. Wir schreiben hier deshalb eine Transformationsvorschrift an, mit der wir Euler-Winkel in Polarkoordinaten übersetzten können.
Dazu geben wir die räumlichen Koordinaten eines Punkts P mit einer Koordinatentransformation einerseits durch Euler-Drehmatrizen und andererseits durch Polarkoordinaten an. Dazu müssen wir auch die Drehung um eine dritte Achse verwenden. Wir wählen hier für die Euler-Transformation
die Winkel φ1, φ2, φ3 und für die
Links
- Kugelkoordinaten auf Wikipedia
- Sources/Lexikon/Eulersche Winkel
- Quaternionen für Drehungen
- Geographische Koordinaten
Literature
- ...