Sources/Lexikon/Kugelkoordinaten

Aus numpedia
Zur Navigation springen Zur Suche springen

Definition

In Kugelkoordinaten oder räumlichen Polarkoordinaten wird ein Punkt P im dreidimensionalen Raum durch seinen Abstand vom Ursprung und zwei Winkel angegeben.

Kugelkoordinaten r, φ1, φ2 eines Punktes P und kartesisches Koordinatensystem mit den Achsen x1, x2,x3.

So ist der Vektor vom Ursprung zum Punkt P

mit

.

Die Kugelkoordinaten kann man - ähnlich wie bei den Euler-Winkeln -zur Definition eines neuen, lokalen Koordinatensystems nutzen. Neben dem Flächen-Normalenvektor spannen dabei die Tangentialvektoren zu φ1 und φ2 eine neue Basis auf.

Einheitsvektoren der Orthogonalbasis , die in Punkt P der Kugel mit die Flächennormale definieren und mit die Tangentialebene aufspannen.

Die Koordinatentransformation erfolgt über

mit der Transformationsmatrix

Transformation von Euler-Winkeln

Oft kann man räumliche Polarkoordinaten besser interpretieren als Euler-Winkel. Wir schreiben deshalb hier eine Transformationsvorschrift an, mit der Euler-Winkel in Polarkoordinaten übersetzten kann.

Dabei geben wir von einem Punkt P in Euler-Koordinaten mit

\begin{array}{l}\cos{\left( {{\theta }_3}\right) }=\frac{\sin{\left( {{\varphi }_2}\right) } \cos{\left( {{\varphi }_3}\right) } \sin{\left( {{\varphi }_3}\right) }+\sin{\left( {{\varphi }_1}\right) } \cos{\left( {{\varphi }_2}\right) } {{\cos{\left( {{\varphi }_3}\right) }}^{2}}-\sin{\left( {{\varphi }_1}\right) } \cos{\left( {{\varphi }_2}\right) } {{\sin{\left( {{\theta }_3}\right) }}^{2}}}{\sin{\left( {{\varphi }_2}\right) } \sin{\left( {{\theta }_3}\right) }}\\ \sin{\left( {{\theta }_2}\right) }=-\frac{\sin{\left( {{\varphi }_1}\right) } \sin{\left( {{\theta }_3}\right) }}{\sin{\left( {{\varphi }_2}\right) } \sin{\left( {{\varphi }_3}\right) }+\sin{\left( {{\varphi }_1}\right) } \cos{\left( {{\varphi }_2}\right) } \cos{\left( {{\varphi }_3}\right) }}\\ \cos{\left( {{\theta }_2}\right) }=\frac{\cos{\left( {{\varphi }_1}\right) } \sin{\left( {{\varphi }_2}\right) } \sin{\left( {{\theta }_3}\right) }}{\sin{\left( {{\varphi }_2}\right) } \sin{\left( {{\varphi }_3}\right) }+\sin{\left( {{\varphi }_1}\right) } \cos{\left( {{\varphi }_2}\right) } \cos{\left( {{\varphi }_3}\right) }}\\ \sin{\left( {{\theta }_1}\right) }=\frac{\sin{\left( {{\varphi }_2}\right) } \sin{\left( {{\varphi }_3}\right) }+\sin{\left( {{\varphi }_1}\right) } \cos{\left( {{\varphi }_2}\right) } \cos{\left( {{\varphi }_3}\right) }}{\sin{\left( {{\theta }_3}\right) }}\\ \cos{\left( {{\theta }_1}\right) }=\cos{\left( {{\varphi }_1}\right) } \cos{\left( {{\varphi }_2}\right) }\\ {{\sin{\left( {{\theta }_3}\right) }}^{2}}=\frac{{{\sin{\left( {{\varphi }_2}\right) }}^{2}} {{\sin{\left( {{\varphi }_3}\right) }}^{2}}+2 \sin{\left( {{\varphi }_1}\right) } \cos{\left( {{\varphi }_2}\right) } \sin{\left( {{\varphi }_2}\right) } \cos{\left( {{\varphi }_3}\right) } \sin{\left( {{\varphi }_3}\right) }+\left( 1-{{\cos{\left( {{\varphi }_1}\right) }}^{2}}\right) {{\cos{\left( {{\varphi }_2}\right) }}^{2}} {{\cos{\left( {{\varphi }_3}\right) }}^{2}}}{1-{{\cos{\left( {{\varphi }_1}\right) }}^{2}} {{\cos{\left( {{\varphi }_2}\right) }}^{2}}}\end{array}


Links

  1. Kugelkoordinaten auf Wikipedia
  2. Sources/Lexikon/Eulersche Winkel
  3. Quaternionen für Drehungen
  4. Geographische Koordinaten

Literature

  • ...