Ein Stab ABC ist durch eine lineare veränderliche Streckenlast q mit den Eckwerten qA in A und qB in B sowie dem Moment MB in B belastet. Der Stab (E-Modul: E) besteht aus zwei Sektionen mit den Längen l1 bzw. l2 sowie den Flächenmomenten I1 bzw. I2. Der Stab ist in A durch ein gelenkiges Festlager, in C durch eine Schiebehülse gelagert, in B sind die beiden Sektionen fest miteinander verbunden. Die Feder in A ist eine Drehfester mit Steifigkeit KA, die Federn in B und C sind Translationsfedern mit den Steifigkeiten kB, kC.
Gesucht ist die analytische Lösung für den Euler-Bernoulli-Balken. Im Vergleich zu Kw98 wird hier eine Lösung mit normierten Koordinaten verfolgt.
Ermitteln Sie für ein Euler-Bernoulli-Modell die analytischen Verläufe der Schnittgrößen und Verschiebungen im Balken für diese Parameter:
Lösung mit Maxima
Die Aufgabe ist ein klassisches Randwertproblem:
zwei Gebiete, in denen ein Euler-Bernoulli-Balken in AB und BC durch eine Streckenlast q belastet ist (in Bereich II ist die Streckenlast allerdings Null) und somit durch die Differentialbeziehung
berschrieben wird.
Rand- und Übergangsbedingungen in den Punkten A, B, C
Wir verwenden xi und ξi als Koordinaten je Bereich, in der Übersicht sieht das Randwertproblem so aus:
Rand A
Bereich I
Übergang B
Bereich II
Rand C
Header
Diese Aufgabe wird mit der Methode der Finiten Elemente in KW96 gelöst. Und im Vergleich zu KW98 wird hier die analytische Lösung mit dimensionslosen Koordinaten angeschreiben.
/*******************************************************/
/* MAXIMA script */
/* version: wxMaxima 15.08.2 */
/* author: Andreas Baumgart */
/* last updated: 2017-09-06 */
/* ref: TM-C, Labor 1 - dimensionslos */
/* description: die Auslenkung w und die unabhängige */
/* Ortskoordinate werden dim'los gemacht */
/*******************************************************/
Declarations
Wir definieren die Formfunktionen für die Streckenlast
In Bereich I und II gilt dieselbe Bewegungs-Differentialgleichung
,
die wir durch Integration lösen und dann bereichsweise an Rand- und Übergangsbedingungen anpassen. Diese Aufgabe wird etwas übersichtlicher, wenn wir die Auslenkung w und die Ortskoordinate x dimensionslos machen. So wählen wir:
und setzten für die Bezugslänge die Auslenkung eines Kragbalkens unter konstanter Streckenlast (hier qA) an. Diese Auslenkung findet man in Standard-Lösungen unter "Kragbalken mit Streckenlast" zu:
Zusätzlich wählen wir zwei unabhängige, dimensionslose Ortskoordinaten für die Bereich I und II, die ihren Ursprung jeweils in den Punkten A und B haben.
Mit
ist die allgemeine Lösung für
... für Bereich I:
... für Bereich II:
Integration of Differential Equation to Formfunction
Y
Y
Für die 2*4 = 8 Integrationskonstanten
suchen wir jetzt die passenden Gleichungen aus Rand- und Übergangsbedingungen.
Zur besseren Übersicht nennen wir die Schnitt-Momente und -Kräfte nach den jeweiligen Knotenpunkten A, B, C und fügen als Index ein + / - hinzu, um die Seite (+: rechts vom Knoten, -: links vom Knoten) zu kennzeichnen.
Aus Rand "A"
Geometrische Randbedingungen
Kraft- und Momenten-Randbedingungen
Aus Übergang "B"
Geometrische Randbedingungen
Kraft- und Momenten-Randbedingungen
Aus Rand "C"
Geometrische Randbedingungen
Kraft- und Momenten-Randbedingungen
Und das liefert das Gleichungssystem aus 8 Gleichungen
für die Integrationskonstanten.
Boundary Conditions
...
1+1
Das Gleichungssystem wollen wir als
schreiben, also - hier nach Einsetzen der System-Parameter
Prepare for Solver
...
}}
<!-------------------------------------------------------------------------------->
Das Lösen des Gleichungssystems liefert
::<math>\begin{array}{l} {{C}_{1,0}}=0,\\{{C}_{1,1}}=246.1 \; N {{m}^{2}},\\{{C}_{1,2}}=703.2\; N m,\\{{C}_{1,3}}=-2404.3\; N,\\{{C}_{2,0}}=127.6 \; N m^3,\\{{C}_{2,1}}=224.7\; N m^2,\\{{C}_{2,2}}=-979.8 \; N m,\\{{C}_{2,3}}=2101.8 N \end{array}</math>.
{{MyCodeBlock|title=Solving
|text=...
|code=
<syntaxhighlight lang="lisp" line start=1>
1+1
Cookies helfen uns bei der Bereitstellung von numpedia. Durch die Nutzung von numpedia erklärst du dich damit einverstanden, dass wir Cookies speichern.