Aufgabenstellung
Ein Stab ABC ist durch eine lineare veränderliche Streckenlast q mit den Eckwerten qA in A und qB in B sowie dem Moment MB in B belastet. Der Stab (E-Modul: E ) besteht aus zwei Sektionen mit den Längen l1 bzw. l2 sowie den Flächenmomenten I1 bzw. I2 . Der Stab ist in A durch ein gelenkiges Festlager, in C durch eine Schiebehülse gelagert, in B sind die beiden Sektionen fest miteinander verbunden. Die Feder in A ist eine Drehfester mit Steifigkeit KA , die Federn in B und C sind Translationsfedern mit den Steifigkeiten kB , kC .
Lageplan
Gesucht ist die analytische Lösung für den Euler-Bernoulli-Balken.
Systemparameter
Ermitteln Sie für ein Euler-Bernoulli-Modell die analytischen Verläufe der Schnittgrößen und Verschiebungen im Balken für diese Parameter:
Lösung mit Maxima
Die Aufgabe ist ein klassisches Randwertproblem:
zwei Gebiete, in denen ein Euler-Bernoulli-Balken in AB und BC durch eine Streckenlast q belastet ist (in Bereich II ist die Streckenlast allerdings Null) und somit durch die Differentialbeziehung
E
I
i
w
i
I
V
(
x
i
)
=
q
(
x
i
)
,
i
=
{
1
,
2
}
{\displaystyle E\;I_{i}w_{i}^{IV}(x_{i})=q(x_{i}),\;\;i=\{1,2\}}
berschrieben wird.
Rand- und Übergangsbedingungen in den Punkten A, B, C
Wir verwenden xi und ξi als Koordinaten je Bereich, in der Übersicht sieht das Randwertproblem so aus:
Rand A Bereich I Übergang B Bereich II Rand C
tmp
Diese Aufgabe mit der Methode der Finiten Elemente in KW96 gelöst.
Text
tmp
Declarations
Text
tmp
In Bereich I und II gilt dieselbe Bewegungs-Differentialgleichung
E
I
i
w
i
I
V
(
x
i
)
=
q
(
x
i
)
,
i
=
{
1
,
2
}
mit
q
(
x
i
)
=
q
0
⋅
ϕ
0
(
ξ
)
+
q
1
⋅
ϕ
1
(
ξ
)
{\displaystyle E\;I_{i}w_{i}^{IV}(x_{i})=q(x_{i}),\;\;i=\{1,2\}{\text{ mit }}q(x_{i})=q_{0}\cdot \phi _{0}(\xi )+q_{1}\cdot \phi _{1}(\xi )}
,
die wir durch Integration lösen und dann bereichsweise anpassen.
So gilt für Bereich II: q0 = 0 und q1 = 0 .
Die allgemeine Lösung ist mit
ϕ
i
(
x
)
=
d
w
(
x
)
d
x
{\displaystyle \displaystyle \phi _{i}(x)={\frac {dw(x)}{dx}}}
... für Bereich I:
w
1
(
x
)
:=
120
⋅
l
1
⋅
C
1
,
0
+
120
⋅
l
1
⋅
C
1
,
1
⋅
x
+
60
⋅
l
1
⋅
C
1
,
2
⋅
x
2
+
20
⋅
l
1
⋅
C
1
,
3
⋅
x
3
+
5
⋅
l
1
⋅
x
4
⋅
q
A
+
x
5
⋅
(
q
B
−
q
A
)
120
⋅
l
1
⋅
E
I
1
ϕ
1
(
x
)
:=
120
⋅
l
1
⋅
C
1
,
1
+
120
⋅
l
1
⋅
C
1
,
2
⋅
x
+
60
⋅
l
1
⋅
C
1
,
3
⋅
x
2
+
20
⋅
l
1
⋅
x
3
⋅
q
A
+
5
⋅
x
4
⋅
(
q
B
−
q
A
)
120
⋅
l
1
⋅
E
I
1
M
1
(
x
)
:=
−
120
⋅
l
1
⋅
C
1
,
2
+
120
⋅
l
1
⋅
C
1
,
3
⋅
x
+
60
⋅
l
1
⋅
x
2
⋅
q
A
+
20
⋅
x
3
⋅
(
q
B
−
q
A
)
120
⋅
l
1
Q
1
(
x
)
:=
−
120
⋅
l
1
⋅
C
1
,
3
+
120
⋅
l
1
⋅
x
⋅
q
A
+
60
⋅
x
2
⋅
(
q
B
−
q
A
)
120
⋅
l
1
{\displaystyle {\begin{array}{l}{{w}_{1}}\left(x\right):={\frac {120\cdot {{l}_{1}}\cdot {{C}_{1,0}}+120\cdot {{l}_{1}}\cdot {{C}_{1,1}}\cdot x+60\cdot {{l}_{1}}\cdot {{C}_{1,2}}\cdot {{x}^{2}}+20\cdot {{l}_{1}}\cdot {{C}_{1,3}}\cdot {{x}^{3}}+5\cdot {{l}_{1}}\cdot {{x}^{4}}\cdot {{q}_{A}}+{{x}^{5}}\cdot \left({{q}_{B}}-{{q}_{A}}\right)}{120\cdot {{l}_{1}}\cdot {{\mathit {EI}}_{1}}}}\\{{\phi }_{1}}\left(x\right):={\frac {120\cdot {{l}_{1}}\cdot {{C}_{1,1}}+120\cdot {{l}_{1}}\cdot {{C}_{1,2}}\cdot x+60\cdot {{l}_{1}}\cdot {{C}_{1,3}}\cdot {{x}^{2}}+20\cdot {{l}_{1}}\cdot {{x}^{3}}\cdot {{q}_{A}}+5\cdot {{x}^{4}}\cdot \left({{q}_{B}}-{{q}_{A}}\right)}{120\cdot {{l}_{1}}\cdot {{\mathit {EI}}_{1}}}}\\{{M}_{1}}\left(x\right):=-{\frac {120\cdot {{l}_{1}}\cdot {{C}_{1,2}}+120\cdot {{l}_{1}}\cdot {{C}_{1,3}}\cdot x+60\cdot {{l}_{1}}\cdot {{x}^{2}}\cdot {{q}_{A}}+20\cdot {{x}^{3}}\cdot \left({{q}_{B}}-{{q}_{A}}\right)}{120\cdot {{l}_{1}}}}\\{{Q}_{1}}\left(x\right):=-{\frac {120\cdot {{l}_{1}}\cdot {{C}_{1,3}}+120\cdot {{l}_{1}}\cdot x\cdot {{q}_{A}}+60\cdot {{x}^{2}}\cdot \left({{q}_{B}}-{{q}_{A}}\right)}{120\cdot {{l}_{1}}}}\end{array}}}
... für Bereich II:
w
2
(
x
)
:=
120
⋅
l
2
⋅
C
2
,
0
+
120
⋅
l
2
⋅
C
2
,
1
⋅
x
+
60
⋅
l
2
⋅
C
2
,
2
⋅
x
2
+
20
⋅
l
2
⋅
C
2
,
3
⋅
x
3
120
⋅
l
2
⋅
E
I
2
ϕ
2
(
x
)
:=
120
⋅
l
2
⋅
C
2
,
1
+
120
⋅
l
2
⋅
C
2
,
2
⋅
x
+
60
⋅
l
2
⋅
C
2
,
3
⋅
x
2
120
⋅
l
2
⋅
E
I
2
M
2
(
x
)
:=
−
120
⋅
l
2
⋅
C
2
,
2
+
120
⋅
l
2
⋅
C
2
,
3
⋅
x
120
⋅
l
2
Q
2
(
x
)
:=
−
C
2
,
3
{\displaystyle {\begin{array}{l}{{w}_{2}}\left(x\right):={\frac {120\cdot {{l}_{2}}\cdot {{C}_{2,0}}+120\cdot {{l}_{2}}\cdot {{C}_{2,1}}\cdot x+60\cdot {{l}_{2}}\cdot {{C}_{2,2}}\cdot {{x}^{2}}+20\cdot {{l}_{2}}\cdot {{C}_{2,3}}\cdot {{x}^{3}}}{120\cdot {{l}_{2}}\cdot {{\mathit {EI}}_{2}}}}\\{{\phi }_{2}}\left(x\right):={\frac {120\cdot {{l}_{2}}\cdot {{C}_{2,1}}+120\cdot {{l}_{2}}\cdot {{C}_{2,2}}\cdot x+60\cdot {{l}_{2}}\cdot {{C}_{2,3}}\cdot {{x}^{2}}}{120\cdot {{l}_{2}}\cdot {{\mathit {EI}}_{2}}}}\\{{M}_{2}}\left(x\right):=-{\frac {120\cdot {{l}_{2}}\cdot {{C}_{2,2}}+120\cdot {{l}_{2}}\cdot {{C}_{2,3}}\cdot x}{120\cdot {{l}_{2}}}}\\{{Q}_{2}}\left(x\right):=-{{C}_{2,3}}\end{array}}}
Formfunctions
Text
tmp
Für die 2*4 = 8 Integrationskonstanten
[
C
1
,
0
,
C
1
,
1
,
C
1
,
2
,
C
1
,
3
,
C
2
,
0
,
C
2
,
1
,
C
2
,
2
,
C
2
,
3
]
{\displaystyle \left[C_{1,0},C_{1,1},C_{1,2},C_{1,3},C_{2,0},C_{2,1},C_{2,2},C_{2,3}\right]}
suchen wir jetzt die passenden Gleichungen aus Rand- und Übergangsbedingungen.
Zur besseren Übersicht nennen wir die Schnitt-Momente und -Kräfte nach den jeweiligen Knotenpunkten A, B, C und fügen als Index ein + / - hinzu, um die Seite (+: rechts vom Knoten, -: links vom Knoten) zu kennzeichnen.
Aus Rand "A"
Aus Übergang "B"
Aus Rand "C"
Und das liefert das Gleichungssystem aus 8 Gleichungen
(
C
1
,
0
E
I
1
=
0
C
1
,
1
⋅
K
A
E
I
1
−
C
1
,
2
=
0
ℓ
1
4
⋅
q
B
120
⋅
E
I
1
+
ℓ
1
4
⋅
q
A
30
⋅
E
I
1
+
ℓ
1
3
⋅
C
1
,
3
6
⋅
E
I
1
+
ℓ
1
2
⋅
C
1
,
2
2
⋅
E
I
1
+
ℓ
1
⋅
C
1
,
1
E
I
1
+
C
1
,
0
E
I
1
=
C
2
,
0
E
I
2
ℓ
1
3
⋅
q
B
24
⋅
E
I
1
+
ℓ
1
3
⋅
q
A
8
⋅
E
I
1
+
ℓ
1
2
⋅
C
1
,
3
2
⋅
E
I
1
+
ℓ
1
⋅
C
1
,
2
E
I
1
+
C
1
,
1
E
I
1
=
C
2
,
1
E
I
2
ℓ
1
⋅
q
B
2
−
C
2
,
0
⋅
k
B
E
I
2
+
ℓ
1
⋅
q
A
2
−
C
2
,
3
+
C
1
,
3
=
0
−
M
B
+
ℓ
1
2
⋅
q
B
6
+
ℓ
1
2
⋅
q
A
3
−
C
2
,
2
+
ℓ
1
⋅
C
1
,
3
+
C
1
,
2
=
0
ℓ
2
2
⋅
C
2
,
3
2
⋅
E
I
2
+
ℓ
2
⋅
C
2
,
2
E
I
2
+
C
2
,
1
E
I
2
=
0
−
ℓ
2
3
⋅
C
2
,
3
⋅
k
C
6
⋅
E
I
2
−
ℓ
2
2
⋅
C
2
,
2
⋅
k
C
2
⋅
E
I
2
−
ℓ
2
⋅
C
2
,
1
⋅
k
C
E
I
2
−
C
2
,
0
⋅
k
C
E
I
2
+
C
2
,
3
=
0
)
{\displaystyle {\begin{pmatrix}{\frac {{C}_{1,0}}{{\mathit {EI}}_{1}}}=0\\{\frac {{{C}_{1,1}}\cdot {{K}_{A}}}{{\mathit {EI}}_{1}}}-{{C}_{1,2}}=0\\{\frac {{{\ell }_{1}^{4}}\cdot {{q}_{B}}}{120\cdot {{\mathit {EI}}_{1}}}}+{\frac {{{\ell }_{1}^{4}}\cdot {{q}_{A}}}{30\cdot {{\mathit {EI}}_{1}}}}+{\frac {{{\ell }_{1}^{3}}\cdot {{C}_{1,3}}}{6\cdot {{\mathit {EI}}_{1}}}}+{\frac {{{\ell }_{1}^{2}}\cdot {{C}_{1,2}}}{2\cdot {{\mathit {EI}}_{1}}}}+{\frac {{{\ell }_{1}}\cdot {{C}_{1,1}}}{{\mathit {EI}}_{1}}}+{\frac {{C}_{1,0}}{{\mathit {EI}}_{1}}}={\frac {{C}_{2,0}}{{\mathit {EI}}_{2}}}\\{\frac {{{\ell }_{1}^{3}}\cdot {{q}_{B}}}{24\cdot {{\mathit {EI}}_{1}}}}+{\frac {{{\ell }_{1}^{3}}\cdot {{q}_{A}}}{8\cdot {{\mathit {EI}}_{1}}}}+{\frac {{{\ell }_{1}^{2}}\cdot {{C}_{1,3}}}{2\cdot {{\mathit {EI}}_{1}}}}+{\frac {{{\ell }_{1}}\cdot {{C}_{1,2}}}{{\mathit {EI}}_{1}}}+{\frac {{C}_{1,1}}{{\mathit {EI}}_{1}}}={\frac {{C}_{2,1}}{{\mathit {EI}}_{2}}}\\{\frac {{{\ell }_{1}}\cdot {{q}_{B}}}{2}}-{\frac {{{C}_{2,0}}\cdot {{k}_{B}}}{{\mathit {EI}}_{2}}}+{\frac {{{\ell }_{1}}\cdot {{q}_{A}}}{2}}-{{C}_{2,3}}+{{C}_{1,3}}=0\\-{{M}_{B}}+{\frac {{{\ell }_{1}^{2}}\cdot {{q}_{B}}}{6}}+{\frac {{{\ell }_{1}^{2}}\cdot {{q}_{A}}}{3}}-{{C}_{2,2}}+{{\ell }_{1}}\cdot {{C}_{1,3}}+{{C}_{1,2}}=0\\{\frac {{{\ell }_{2}^{2}}\cdot {{C}_{2,3}}}{2\cdot {{\mathit {EI}}_{2}}}}+{\frac {{{\ell }_{2}}\cdot {{C}_{2,2}}}{{\mathit {EI}}_{2}}}+{\frac {{C}_{2,1}}{{\mathit {EI}}_{2}}}=0\\-{\frac {{{\ell }_{2}^{3}}\cdot {{C}_{2,3}}\cdot {{k}_{C}}}{6\cdot {{\mathit {EI}}_{2}}}}-{\frac {{{\ell }_{2}^{2}}\cdot {{C}_{2,2}}\cdot {{k}_{C}}}{2\cdot {{\mathit {EI}}_{2}}}}-{\frac {{{\ell }_{2}}\cdot {{C}_{2,1}}\cdot {{k}_{C}}}{{\mathit {EI}}_{2}}}-{\frac {{{C}_{2,0}}\cdot {{k}_{C}}}{{\mathit {EI}}_{2}}}+{{C}_{2,3}}=0\end{pmatrix}}}
für die Integrationskonstanten.
Boundary Conditions
Text
tmp
Das Gleichungssystem wollen wir als
A
_
_
⋅
x
_
=
b
_
{\displaystyle {\underline {\underline {A}}}\cdot {\underline {x}}={\underline {b}}}
schreiben, also
(
1
E
I
1
0
0
0
0
0
0
0
0
K
A
E
I
1
−
1
0
0
0
0
0
1
E
I
1
ℓ
1
E
I
1
ℓ
1
2
2
⋅
E
I
1
ℓ
1
3
6
⋅
E
I
1
−
1
E
I
2
0
0
0
0
1
E
I
1
ℓ
1
E
I
1
ℓ
1
2
2
⋅
E
I
1
0
−
1
E
I
2
0
0
0
0
0
1
−
k
B
E
I
2
0
0
−
1
0
0
1
ℓ
1
0
0
−
1
0
0
0
0
0
0
1
E
I
2
ℓ
2
E
I
2
ℓ
2
2
2
⋅
E
I
2
0
0
0
0
−
k
C
E
I
2
−
ℓ
2
⋅
k
C
E
I
2
−
ℓ
2
2
⋅
k
C
2
⋅
E
I
2
−
ℓ
2
3
⋅
k
C
−
6
⋅
E
I
2
6
⋅
E
I
2
)
⋅
x
_
=
(
0
0
−
ℓ
1
4
⋅
q
B
120
⋅
E
I
1
−
ℓ
1
4
⋅
q
A
30
⋅
E
I
1
−
ℓ
1
3
⋅
q
B
24
⋅
E
I
1
−
ℓ
1
3
⋅
q
A
8
⋅
E
I
1
−
ℓ
1
⋅
q
B
2
−
ℓ
1
⋅
q
A
2
M
B
−
ℓ
1
2
⋅
q
B
6
−
ℓ
1
2
⋅
q
A
3
0
0
)
{\displaystyle {\begin{pmatrix}{\frac {1}{{\mathit {EI}}_{1}}}&0&0&0&0&0&0&0\\0&{\frac {{K}_{A}}{{\mathit {EI}}_{1}}}&-1&0&0&0&0&0\\{\frac {1}{{\mathit {EI}}_{1}}}&{\frac {{\ell }_{1}}{{\mathit {EI}}_{1}}}&{\frac {{\ell }_{1}^{2}}{2\cdot {{\mathit {EI}}_{1}}}}&{\frac {{\ell }_{1}^{3}}{6\cdot {{\mathit {EI}}_{1}}}}&-{\frac {1}{{\mathit {EI}}_{2}}}&0&0&0\\0&{\frac {1}{{\mathit {EI}}_{1}}}&{\frac {{\ell }_{1}}{{\mathit {EI}}_{1}}}&{\frac {{\ell }_{1}^{2}}{2\cdot {{\mathit {EI}}_{1}}}}&0&-{\frac {1}{{\mathit {EI}}_{2}}}&0&0\\0&0&0&1&-{\frac {{k}_{B}}{{\mathit {EI}}_{2}}}&0&0&-1\\0&0&1&{{\ell }_{1}}&0&0&-1&0\\0&0&0&0&0&{\frac {1}{{\mathit {EI}}_{2}}}&{\frac {{\ell }_{2}}{{\mathit {EI}}_{2}}}&{\frac {{\ell }_{2}^{2}}{2\cdot {{\mathit {EI}}_{2}}}}\\0&0&0&0&-{\frac {{k}_{C}}{{\mathit {EI}}_{2}}}&-{\frac {{{\ell }_{2}}\cdot {{k}_{C}}}{{\mathit {EI}}_{2}}}&-{\frac {{{\ell }_{2}^{2}}\cdot {{k}_{C}}}{2\cdot {{\mathit {EI}}_{2}}}}&-{\frac {{{\ell }_{2}^{3}}\cdot {{k}_{C}}-6\cdot {{\mathit {EI}}_{2}}}{6\cdot {{\mathit {EI}}_{2}}}}\end{pmatrix}}\cdot {\underline {x}}={\begin{pmatrix}0\\0\\-{\frac {{{\ell }_{1}^{4}}\cdot {{q}_{B}}}{120\cdot {{\mathit {EI}}_{1}}}}-{\frac {{{\ell }_{1}^{4}}\cdot {{q}_{A}}}{30\cdot {{\mathit {EI}}_{1}}}}\\-{\frac {{{\ell }_{1}^{3}}\cdot {{q}_{B}}}{24\cdot {{\mathit {EI}}_{1}}}}-{\frac {{{\ell }_{1}^{3}}\cdot {{q}_{A}}}{8\cdot {{\mathit {EI}}_{1}}}}\\-{\frac {{{\ell }_{1}}\cdot {{q}_{B}}}{2}}-{\frac {{{\ell }_{1}}\cdot {{q}_{A}}}{2}}\\{{M}_{B}}-{\frac {{{\ell }_{1}^{2}}\cdot {{q}_{B}}}{6}}-{\frac {{{\ell }_{1}^{2}}\cdot {{q}_{A}}}{3}}\\0\\0\end{pmatrix}}}
Die Matrix-Elemente sind für die Koeffizientenmatrix
a
1
,
1
=
1
/
E
I
1
a
2
,
2
=
K
A
/
E
I
1
a
2
,
3
=
−
1
a
3
,
1
=
1
/
E
I
1
a
3
,
2
=
ℓ
1
/
E
I
1
a
3
,
3
=
ℓ
1
2
/
(
2
⋅
E
I
1
)
a
3
,
4
=
ℓ
1
3
/
(
6
⋅
E
I
1
)
a
3
,
5
=
−
1
/
E
I
2
a
4
,
2
=
1
/
E
I
1
a
4
,
3
=
ℓ
1
/
E
I
1
a
4
,
4
=
ℓ
1
2
/
(
2
⋅
E
I
1
)
a
4
,
6
=
−
1
/
E
I
2
a
5
,
4
=
1
a
5
,
5
=
−
k
B
/
E
I
2
a
5
,
8
=
−
1
a
6
,
3
=
1
a
6
,
4
=
ℓ
1
a
6
,
7
=
−
1
a
7
,
6
=
1
/
E
I
2
a
7
,
7
=
ℓ
2
/
E
I
2
a
7
,
8
=
ℓ
2
2
/
(
2
⋅
E
I
2
)
a
8
,
5
=
−
k
C
/
E
I
2
a
8
,
6
=
−
(
ℓ
2
⋅
k
C
)
/
E
I
2
a
8
,
7
=
−
(
ℓ
2
2
⋅
k
C
)
/
(
2
⋅
E
I
2
)
a
8
,
8
=
−
(
ℓ
2
3
⋅
k
C
−
6
⋅
E
I
2
)
/
(
6
⋅
E
I
2
)
{\displaystyle {\begin{array}{l}a_{1,1}=1/EI_{1}\\a_{2,2}=K_{A}/EI_{1}\\a_{2,3}=-1\\a_{3,1}=1/EI_{1}\\a_{3,2}=\ell _{1}/EI_{1}\\a_{3,3}=\ell _{1}^{2}/(2\cdot EI_{1})\\a_{3,4}=\ell _{1}^{3}/(6\cdot EI_{1})\\a_{3,5}=-1/EI_{2}\\a_{4,2}=1/EI_{1}\\a_{4,3}=\ell _{1}/EI_{1}\\a_{4,4}=\ell _{1}^{2}/(2\cdot EI_{1})\\a_{4,6}=-1/EI_{2}\\a_{5,4}=1\\a_{5,5}=-k_{B}/EI_{2}\\a_{5,8}=-1\\a_{6,3}=1\\a_{6,4}=\ell _{1}\\a_{6,7}=-1\\a_{7,6}=1/EI_{2}\\a_{7,7}=\ell _{2}/EI_{2}\\a_{7,8}=\ell _{2}^{2}/(2\cdot EI_{2})\\a_{8,5}=-k_{C}/EI_{2}\\a_{8,6}=-(\ell _{2}\cdot k_{C})/EI_{2}\\a_{8,7}=-(\ell _{2}^{2}\cdot k_{C})/(2\cdot EI_{2})\\a_{8,8}=-(\ell _{2}^{3}\cdot k_{C}-6\cdot EI_{2})/(6\cdot EI_{2})\\\end{array}}}
und für die rechte Seite
b
1
=
0
b
2
=
0
b
3
=
(
−
(
ℓ
1
4
⋅
q
B
)
/
(
120
⋅
E
I
1
)
)
−
(
ℓ
1
4
⋅
q
A
)
/
(
30
⋅
E
I
1
)
b
4
=
(
−
(
ℓ
1
3
⋅
q
B
)
/
(
24
⋅
E
I
1
)
)
−
(
ℓ
1
3
⋅
q
A
)
/
(
8
⋅
E
I
1
)
b
5
=
(
−
(
ℓ
1
⋅
q
B
)
/
2
)
−
(
ℓ
1
⋅
q
A
)
/
2
b
6
=
M
B
−
(
ℓ
1
2
⋅
q
B
)
/
6
−
(
ℓ
1
2
⋅
q
A
)
/
3
b
7
=
0
b
8
=
0
{\displaystyle {\begin{array}{l}b_{1}=0\\b_{2}=0\\b_{3}=(-(\ell _{1}^{4}\cdot q_{B})/(120\cdot EI_{1}))-(\ell _{1}^{4}\cdot q_{A})/(30\cdot EI_{1})\\b_{4}=(-(\ell _{1}^{3}\cdot q_{B})/(24\cdot EI_{1}))-(\ell _{1}^{3}\cdot q_{A})/(8\cdot EI_{1})\\b_{5}=(-(\ell _{1}\cdot q_{B})/2)-(\ell _{1}\cdot q_{A})/2\\b_{6}=M_{B}-(\ell _{1}^{2}\cdot q_{B})/6-(\ell _{1}^{2}\cdot q_{A})/3\\b_{7}=0\\b_{8}=0\end{array}}}
Prepare for Solver
Text
tmp
Das Lösen des Gleichungssystems liefert
C
1
,
0
=
0
,
C
1
,
1
=
246.1
N
m
2
,
C
1
,
2
=
703.2
N
m
,
C
1
,
3
=
−
2404.3
N
,
C
2
,
0
=
127.6
N
m
3
,
C
2
,
1
=
224.7
N
m
2
,
C
2
,
2
=
−
979.8
N
m
,
C
2
,
3
=
2101.8
N
{\displaystyle {\begin{array}{l}{{C}_{1,0}}=0,\\{{C}_{1,1}}=246.1\;N{{m}^{2}},\\{{C}_{1,2}}=703.2\;Nm,\\{{C}_{1,3}}=-2404.3\;N,\\{{C}_{2,0}}=127.6\;Nm^{3},\\{{C}_{2,1}}=224.7\;Nm^{2},\\{{C}_{2,2}}=-979.8\;Nm,\\{{C}_{2,3}}=2101.8N\end{array}}}
Solving
Text
tmp
Und die Ergebnisse können wir uns anschauen ...
... für w(x):
Biegelinie w(x)
... für Φ(x) :
Kippung w'(x)
... für M(x):
Biegemoment M(x)
... für Q(x):
Querkraft Q(x)
Post-Processing
Text
Links
Literature