Gelöste Aufgaben/Kw53

Aus numpedia
Zur Navigation springen Zur Suche springen


Aufgabenstellung

Eine Brücke ABC der Masse mB und homogener Biegesteifigkeit EI ist in C gelenkig gelagert und in A sowie B mit einem Seil verbunden. Das undehnbare Seil wird dabei über eine kleine Rolle (Radius r ≪ ℓ) in D haftungsfrei geführt. In Punkt C ist die Brücke über eine Drehfeder der Steifigkeit KC mit dem Lager verbunden. In A steht eine Person der Masse mA.


Lageplan (wie Kw50)

Geben Sie die Lösung für ein Euler-Bernoulli-Modell der Brücke mit dem Verfahren von Rayleigh-Ritz (EBB) an - hier ohneLagrange-Multiplikator für die geometrische Zwangsbedingung.

Dies ist eine Näherungslösung zu Kw50.

Ermitteln Sie die genäherten Verläufe der Schnittgrößen und Verschiebungen im Balken für diese Parameter:

Lösung mit Maxima

In dieser Aufgabe berechnen wir eine Näherungslösung nach dem Verfahren von Rayleigh-Ritz (EBB) zu Kw50.

Alle Überlegungen zur Geometrie des Systems übernehmen wir.

tmp

Für die Lösung nutzen wir hier das Ritz-Verfahren. Die geometrischen Zwangsbedingungen arbeiten wir direkt in die Trial-Functions ein.

Header

text


1+1




tmp

Header

text


1+1




tmp

Wir arbeiten mit den selben Parametern und Bezugslängen, wie in Kw50.

Declarations

text


1+1




tmp

Nach "Ritz" wählen wir zwei Trial-Functions über die gesamte Stablänge. Als zugehörige, gesuchte Koordinaten wählen wir die Auslenkung in A und die Verdrehung in C, also

.

Die Trial-Functions müssen dann diesen geoemtrischen Zwangsbedingungen genügen:

.

Mit einem Polynom 3-ten Grades als Ansatz ist also unser Näherungsansatz für die Auslenkung dann

mit den Trial-Functions

.

Und so sehen sie aus, unsere zwei Trial-Functions:

Trial Functions


Formfunctions

text


1+1




tmp

Die Potentiale aus Elastischen Energien und Arbeitsfunktion der Gewichtskräfte sind

.

Einsetzten der Trial-Functions liefert

Potentials

text


1+1




tmp

Nach dem Minimum Prinzip hat das Potential U ein Minimum - das Sytem ist im Gleichgewicht, wenn

.

In den System-Matrizen stehen hier

und

.

Equilibrium Conditions

text


1+1




tmp

Das Lösen des Gleichungssystems liefert dann

.

Solving

text


1+1




tmp

Post-Processing

Und die Ergebnisse können wir uns anschauen ...

... für w(x):

Auslenkung w(x)

... für Φ(x):

Kippwinkel Φ(x)

... für M(x):

Biegemoment M(x)

... für Q(x):

Querkraft Q(x)

/* Post-Processing                                    */
w : subst([x=xi*ℓ[0]],subst(geometry,subst(sol, sum(Q[j]*phi[j],j,1,3))));

fcts: [         w             ,
           diff(w,xi  )/ℓ[0]  ,
       -EI*diff(w,xi,2)/ℓ[0]^2,
       -EI*diff(w,xi,3)/ℓ[0]^3];
fcts: float(subst(geometry,expand(fcts)))$ 
facts: [1/ℓ[Bez], ℓ[0]/ℓ[Bez], 1/(m[B]*g*ℓ[0]), 1/(m[B]*g)];
 
textlabels : ["← w(x)/ℓ[Bez]", "← w'(x)/(ℓ[Bez]/ℓ[0]) →", "M(x)/(m[B]*g*ℓ) →", "Q(x)/(m[B]g →"];
for i: 1 thru 4 do(
  f : expand(subst(dimless,facts[i]*fcts[i])),
  preamble: if i<=2 then "set yrange [] reverse" else "set yrange []",
  plot2d(f, [xi,0,1], [legend, false],
                      [gnuplot_preamble, preamble],
                      [xlabel, "x/ℓ →"],
                      [ylabel, textlabels[i]]))$





Links

  • Aufgabe Kw50 (analytische Lösung dieser Aufgabe)
  • Aufgabe Kw52 (Lösung dieser Aufgabe mit dem Ansatz von Rayleigh-Ritz und Lagrange-Multiplikator)
  • Aufgabe Kw53 (Lösung dieser Aufgabe mit dem Ansatz von Rayleigh-Ritz)

Literature

  • ...