Scheibenwischer können auf einer Windschutzscheibe laute "Rubbel"-Geräusche erzeugen - eine Bewegung, die sich selbsterregt aus dem Zusammenspiel eines schwingungsfähigen Systems und einer Reibkennlinie ergibt.
Scheibenwischer-"Rubbeln"
Für ein einfaches Ersatz-System modellieren wir den Wischer-Arm als zwei parallele, masselose Blatt-Federn (Euler-Bernoulli-Balken mit Biegesteifigkeit jeweils EI1 und EI2 bzgl der Auslenkung senkrecht zur Scheibe und tangential dazu) und idealisieren das Wischerblatt durch eine Punktmasse (Masse m). Zwischen der Lippe des Scheibenwischers und der Windschutzscheibe wirkt eine Tangentialkraft aus trockener Reibung (μ, μ0).
Wischerblatt auf Scheibe.
Gesucht ist die selbsterregte Schwingung des Wischerblatts beim "Rubbeln" auf der Windschutzscheibe. Simulieren Sie dazu "Stick-Slip"-Schwingungen des Systems.
Lösung mit Maxima
Header
"Stick-Slip" Schwingungen sind klassische selbsterregte Schwingungen. Selbsterrung heißt: das System lenkt den Energiefluss im System so, dass Schwingungen "aus sich heraus" angeregt werden. Charakteristisch für "Stick-Slip" Schwingungen ist, dass zwei Körper zeitweise aneinander haften, auseinander gerissen werden und dann aneinander reiben - bis sie wieder aneinander haften.
Im Zentrum dieser Aufgabe steht die Kennlinie (engl.: Characteristic), die den Zusammenhang zwischen Tangentialkräft (Haftkraft, Reibkraft), Normalkraft und Relativgeschwindigkeit zwischen Wischer-Lippe und Windschutzscheibe erfasst.
Trockene Reibung im Modell beschreibt man mit zwei System-Parametern:
kopieren wir mit der Funktion für den den Reibungskoeffizienten
aus Abschnitt Reibkennlinie stückweise mit Polynomen 2ten und 3ten Grades zu
Sie muss punkt-symmetrisch sein (die Reibkraft ändert ihr Vorzeichen mit der Orientierung der Relativgeschwindigkeit) und sie enthält den Sonderfall "Haften" für
Für die Bewegungsgleichung des Systems wählen wir als Koordinaten die elastische Verformung des Wischer-Arms in B, positiv in Richtung der Drehbewegung. Wir gehen davon aus, dass der Wischer in A mit der konstanten Geschwindigkeit Ω gedreht wird, die Punktmasse m also den Weg
Das Modell ist so einfach, dass man schnell den Einfluss von Steifigkeiten (was passiert, wenn ich die Eigenfrequenz des Systems erhöhe?) herausspielen kann. Das ist gut.
Wischer-Blatt im SchnittEs ist aber auch so einfach, dass zentrale Charakteristika nicht erfasst werden. So sieht ein Wischer-Blatt im Schnitt ungefähr so aus.
Es legt sich im Betrieb seitlich auf die Windschutzscheibe, Außerdem sind die Wischer-Arme in der Regel keine geraden "Biegebalken", so dass sie sich bei Vor- und Rückbewegung anders verhalten. Auch vermute ich, dass eine Bewegung senkrecht zur Windschutzscheibe eine Rolle spielt: die Lippe "klopft" vermutlich auf die Scheibe.
Trotzdem würde man so anfangen: ein ganz einfaches Modell für den Einstieg, das man dann weiter entwickelt.
Cookies helfen uns bei der Bereitstellung von numpedia. Durch die Nutzung von numpedia erklärst du dich damit einverstanden, dass wir Cookies speichern.