Gelöste Aufgaben/JUMP/E-Motor and Drive-Train
Scope
The Drive-Train consists of a DC/DC-converter, a DC Motor and a gear-box.
- DC/DC-converter: is supplied with the battery voltage UB, the output voltage is controlled by the driver via setpoint “p“.
- motor: is a standard DC brushed motor, the manufacturer provides only few information on its characteristics - we’ll need to improvise.
- gearbox: has a gear ratio of ratio of nG=100, its shaft rotates at speed ωW and delivers a torque MW to the front wheels.
The task is: provide a mathematical model for the drive train that accounts for load-alterations imposed by the driver. And we assume losses in the two converters - DC/DC and gearbox - to be negligible.
Structure
The drive train receives a "gas"-pedal position "p" from the driver and a battery-voltage UB.
It delivers a torque MW on the wheel and creates an electric current IM through the motor.
The sub-model consists of DC/DC-converter, Motor and gear-box:
DC/DC Converter
Losses in the DC/DC converter shall be small - so for input port “1“ and output port “2“ we obtain
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U_B \cdot I_B = U_M \cdot I_M} .
Let the “gas”-pedal-indicator “p“ control
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U_M = p \cdot U_B \text{; } 0 \le p \le 1.}
with
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0 \le p \le 1 \text{ and } U_1 = U_B}
Motor
We use a common electric circuit representation for a series wound motor, the field coils are connected electrically in series with the armature coils, resistance R sums up all electrical losses in the motor.
Gearbox
Losses in the gearbox shall be small - so for input (ωM, MM) and output (ωW, MW) we obtain the fixed relation
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega_M \cdot M_M = \omega_W \cdot M_W} .
Fortunately, this relationship is already "hardwired" in the Principle of Virtual Work. And we have only one differential equation for the electrical components:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\displaystyle d I_B}{\displaystyle d t} = \frac{\displaystyle U_L}{\displaystyle L}} ,
the remaining equations are algebraic.
Model
Electrical Components
For the motor, we find with Kirchhoff's law that
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U_M = U_R + U_L + e}
with UR, UL being the differential voltage over resistance R and inductance L respectively. “e” is the back electromagnetic force with
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e = k_e\cdot \tilde{\omega}_M}
and the electromotive force constant ke. Note the Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde{\omega}_M} is the differential rotational velocity between rotor and stator, i.e.
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde{\omega}_M = \dot{\psi}_M(t) - \dot{\phi}(t).}
Employing
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U_R = R \cdot I_M, U_L = L\cdot \frac{\displaystyle d I_M}{\displaystyle dt}}
and using
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_M = k_T \cdot I_M}
with the armature constant kT, we have the complete set of equations.
From the above, we find
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L \cdot \frac{\displaystyle d}{\displaystyle d t} {I_M}(t)= U_B (t) \cdot p(t) -R \, {I_M}(t) - e}
and additionally the algebraic equations
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{ll} {I_B}&={I_M} \cdot \operatorname{p}(t),\\ {U_R}&=R \cdot {I_M}(t),\\ {U_L}&={U_B} \cdot \operatorname{p}(t)-R\cdot {I_M}(t)-e,\\ {U_M}&={U_B} \cdot \operatorname{p}(t) \end{array}} .
/*******************************************************/
/* MAXIMA script */
/* version: wxMaxima 16.04.2 */
/* author: Andreas Baumgart */
/* last updated: 2021-02-08 */
/* ref: Modelling and Simulation (TUAS) */
/* description: virtual work of drive train electrics */
/*******************************************************/
/*******************************************************/
/* declarations */
/*******************************************************/
declare("φ", alphabetic);
declare("ψ", alphabetic);
declare("ω", alphabetic);
/*******************************************************/
/* kinematics */
/*******************************************************/
kirchhoff : [U[M] = p(t)*U[B],
U[B]*I[B] = U[M]*I[M],
U[M] = U[R] + U[L] + e,
e = k[e]*omega[M],
ω[M] = diff(ψ[M](t),t)+diff(φ(t),t),
U[R] = R*I[M](t),
U[L] = L * diff(I[M](t),t),
M[M] = k[t]*I[M](t)];
solve(kirchhoff[7], [diff(I[M](t),t)]);
Mechanical Components
The Virtual Work of d'Alembert forces, motor torque MM and wheel torque MW is
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{ll} \delta W &= - J_M \cdot \ddot{\psi}_M(t)\cdot \delta \psi_M + M_M \cdot \left(\psi_M + \phi(t) \right) - M_W \cdot \delta \psi_W\\ &= 0 \end{array}} .
Since the gearbox is built into the car, the wheel-side relative gear-box-angle is
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde{\psi}_{W} = \psi_W(t) + \phi(t)}
and on the motor-side
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde{\psi}_{M} = \psi_M(t) - \phi(t)} .
With the gear transmission ratio
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_G = \frac{\displaystyle \tilde{\psi}_M}{\displaystyle \tilde{\psi}_W}}
and
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underline{q}_E = \left( \begin{array}{c} \phi(t)\\ \psi_W(t) \end{array} \right)}
we find
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta W = \delta \underline{q}_E \cdot \left( - \underline{\underline{M}}_E \cdot \underline{\ddot{q}}_E + \left( \begin{array}{c} -n_G\cdot M_M\\ +n_G\cdot M_M-M_W\\ \end{array} \right) \right)}
with
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underline{\underline{M}}_E=\begin{pmatrix}\left( {{n}_{G}^{2}}+2 {n_G}+1\right) \, {J_M} & -\left( {{n}_{G}^{2}}+{n_G}\right) \, {J_M}\\ -\left( {{n}_{G}^{2}}+{n_G}\right) \, {J_M} & {{n}_{G}^{2}}\, {J_M}\end{pmatrix}} .
We have thus "returned" all state variables to the Car-Body-submodel.
/*******************************************************/
/* MAXIMA script */
/* version: wxMaxima 16.04.2 */
/* author: Andreas Baumgart */
/* last updated: 2021-02-08 */
/* ref: Modelling and Simulation (TUAS) */
/* description: virtual work of drive train mechanics */
/*******************************************************/
/*******************************************************/
/* declarations */
/*******************************************************/
declare("δ", alphabetic);
declare("φ", alphabetic);
declare("ψ", alphabetic);
/*******************************************************/
/* kinematics */
/*******************************************************/
kin : [ψ[M,r] = n[G]*ψ[W,r],
ψ[W,r] = ψ[W](t) - φ(t),
ψ[M,r] = ψ[M](t) + φ(t)];
Q : [ψ[M](t),ψ[M,r],ψ[W,r]];
sol: ratsimp(solve(kin,Q))[1];
/* Principle of Virtual Work */
PVW: δW = - J[M]*diff(ψ[M](t),t,2)*δψ[M] + M[M]*(δψ[M]+δφ) - M[W]*δψ[W];
/* minimal coordinates */
q : [ φ(t), ψ[W](t)];
δq: [δφ ,δψ[W] ];
varia: [ψ[M](t)=δψ[M],ψ[M,r]=δψ[M,r],ψ[W,r]=δψ[W,r],
ψ[W](t)=δψ[W], φ(t) =δφ];
sol : expand(append(sol, subst(varia,sol)));
PVW : expand(subst(sol,PVW));
PVW : ev(PVW,nouns);
eom : makelist(coeff(rhs(PVW),δq[i]),i,1,2);
eom : ratsimp(eom);
MM : funmake('matrix,makelist(makelist(ratsimp(coeff(-eom[i],'diff(q[j],t,2))),j,1,2),i,1,2));
rest : expand(eom + makelist(sum(MM[i,j]*diff(q[j],t,2),j,1,2),i,1,2));
print(δq, "*(-",MM,"*",transpose(diff(q,t,2)),"+",transpose(rest),") = 0")$
Consequently, the drive train has only one state-variable: IM:
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underline{q}_E(t) = \left( I_M(t) \right)}
where
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\displaystyle d}{\displaystyle d t} {I_M}(t)=\frac{\displaystyle {U_B} \operatorname{p}(t)-R\, {I_M}(t)-e}{\displaystyle L}}
and with this algebraic equation
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e = k_e \cdot \underbrace{\left(\dot{\psi}_M(t) + \dot{\phi}(t) \right)}_{\displaystyle =\tilde{\omega}_M = n_G \cdot \tilde{\omega}_W}} .
Keep in mind that Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde{\omega}_M} and Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde{\omega}_W} are the rotational velocities of the gearbox-shafts relative to the car-body, thus
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{array}{ll}\tilde{\omega}_W &= \frac{\displaystyle d\,\tilde{\psi}}{\displaystyle d\, t}\\ &= \left( \underbrace{\frac{\displaystyle d\, \psi}{\displaystyle d\, t}}_{\displaystyle =\omega} - \frac{\displaystyle d\, \phi}{\displaystyle d\, t}\right)\end{array}} .
Variables
name | symbol | unit |
---|---|---|
motor current | IM | A |
Parameter
System parameters for the motor are kT, ke and RM . For the stationary (Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\displaystyle d \; I_M}{\displaystyle dt} = 0} ) - condition, we derive
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_M=\frac{{U_M}\, {k_T}-{k_T}\, {k_e} \tilde{\omega}_M }{{R_M}}} .
Since
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k_e = k_T}
we see that
- under a "no-load"-condition MM=0, we have
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k_T= \frac{U_M}{\tilde{\omega}_{NL}}}
- under the "stalled motor"-condition Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde{\omega}_{St}=0}
, we have
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R = \frac{\displaystyle U_M}{\displaystyle I_{St}}} where Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I_{St} = \frac{\displaystyle M_{St}}{\displaystyle k_T}} .
and - for UM = 12 V - we can import measured performance parameters and then replace kT/ ke, ISt and RM by Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde{\omega}_{NL}}
and MSt, which make the system parameters to be selected more descriptive.
name | symbol | value | unit |
---|---|---|---|
nominal voltage | Uref | 12 | V |
no-load rotational speed | Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde{\omega}_{NL}} | 14800 | rpm |
stall-current | ISt | 8.6 | A |
stall-torque | MSt | 0.042 | N m |
inductance | L | 0.05 | H |
gear tramission ratio | nG | 25 | 1 |
References
- ...