Gelöste Aufgaben
Die Liste von Aufgaben auf dieser Seite ist nicht thematisch sortiert.
Das explizite Lösungsschema für die Bearbeitung der Aufgaben orientiert sich nach einem festen Muster. Grundsätzlich folgen wir dem Standardprozess der Modellbildung. Die meisten Aufgaben sind dafür allerdings zu "klein" und wir adaptieren ein "passendes" Schema.
Bitte orientieren Sie sich an den Schlagworten (Tags) auf der Startseite, wenn Sie Aufgaben zu bestimmten Themen suchen.
COVI |
|
![]() Gesucht ist hier ein phänomenologisches Modell für die Entwicklung der Anzahl der Individuen, die
|
DGEB | |
![]() Gesucht sind die Differentialgleichungen des statischen Gleichgewichts für den schlanken Stab mit Rechteck-Querschnitt unter Längs- und Querkraft, ausgehend von der Virtuellen Formänderungsenergie δΠ. Wir finden so die bekannten Differentialbeziehungen für das Timoshenko / Euler-Bernoulli-Modell eines Balkens. |
DGEC | |
![]() Ein Balken AB (Länge ℓ, Rechteck-Querschnitt h*b, Elastizitäts-Module E) ist in A fest eingespannt und in B durch eine Parallelführung gelagert. In B wird er durch eine senkrechte Kraft F belastet. Wir vergleichen die Auslenkung in B nach den Balken-Modellen von |
FEAA | |
![]() |
FEAB | |
![]() |
FEAC | |
![]() |
FEAD | |
![]() |
FEAE | |
![]() |
FEAF | |
![]() Gesucht ist die Längsschwingung des Stabes beim Loslassen aus seiner unverformten Referenzlage. Dabei arbeiten wir mit der Methode der Finiten Elemente zum Aufstellen der Bewegungsgleichungen. Die Integeationskonstanten der Lösung passen wir an die Anfangsbedingungen
|
FEAG | |
![]() |
FEB1 | |
![]() Ein Hubschrauber-Rotor dreht mir der konstanten Winknelgeschwindigkeit Ω. Das Rotor-Blatt ist aus Aluminium. Gesucht ist die FEM-Lösung für der Verschiebung der Querschnitte und die Dehnung der Querschnitte. |
FEB2 | |
![]() |
FEB3 | |
![]() |
FEB4 | |
![]() Das skizzierte System besteht aus Euler-Bernoulli-Balken (jeweils Länge a) der Biegesteifigkeit EI. Die Konstruktion wird in A durch ein gelenkiges Festlager gehalten und in B durch die Kraft F belastet. Gesucht ist die Ersatzfeder-Steifigkeit des Systems, das Sie aus Finiten Elementen mit Euler-Bernoulli-Balken zusammensetzen. |
FEC1 | |
![]() |
FEM1 | |
![]() Using ANSYS workbench, decide upon the wall-thickness of a pressure-vessel subject to a differential internal pressure of p=1 bar. Let |
- Bike
- COVI
- DGEB
- DGEC
- FEAA
- FEAB
- FEAC
- FEAD
- FEAE
- FEAF
- FEAG
- FEB1
- FEB2
- FEB3
- FEB4
- FEC0
- FEC1
- FEM1
- GYRO
- GYRQ
- Hko8
- JUMP
- Kerb
- Kig1
- Kit4
- Kit5
- Kit6
- Kita
- Kitb
- Kv52
- Kv53
- Kw23
- Kw24
- Kw25
- Kw26
- Kw27
- Kw28
- Kw29
- Kw30
- Kw50
- Kw51
- Kw52
- Kw53
- Kw55
- Kw56
- Kw60
- Kw96
- Kw98
- Kw99
- LA01
- LM01
- MaMa
- ODE1
- ODE2
- PvV1
- PvV2
- SKEB
- SKER
- StaB
- StaF
- T312
- T313
- T3BP
- T3PB
- T401
- TC12
- TC13
- TkPb
- Tzul
- UEBA
- UEBB
- UEBC
- UEBD
- UEBF
- UEBH
- UEBI
- UEBJ
- UEBK
- UEBL
- UEBO
- UEBP
- W8Zt
- W8Zu
- W8Zv
- template