Gelöste Aufgaben/DGEB
Aufgabenstellung
In dieser Aufgabe starten wir von "first principles" - hier das Prinzip der virtuellen Verrückungen - und entwicklen die Bewegungsgleichunge für einen schlanken Stab unter Langskräft und Biegemoment.

Gesucht sind die Differentialgleichungen des statischen Gleichgewichts für den schlanken Stab mit Rechteck-Querschnitt unter Längs- und Querkraft, ausgehend von der Virtuellen Formänderungsenergie δΠ.
Wir finden so die bekannten Differentialbeziehungen für das Timoshenko / Euler-Bernoulli-Modell eines Balkens.
Lösung mit Maxima
Wie alle zentralen Begriffe der Elastizitätstheorie ineinandergreifen, um die virtuelle Formänderungsenergie für den Euler-Bernoulli-Balken zu ermitteln, zeigt diese Aufgabe.
Header
Hier kommen
- das Hook'sche Gesetz in seiner allgemeinen, 3D-Fassung,
- die allgemeinen Verschiebungs-Verzerrungs-Bedingungen,
- die klassischen Annahmen zur Theorie von Stäben zum Einsatz sowie
- die Gleichgewichtsbedingungen nach dem Prinzip der virtuellen Verrückungen.
zum Einsatz.
Declarations
Wir brauchen das volle Instrumentarium der Elastizitätstheorie - angefangen bei einfachen Abkürzungen wie der Querschnittsfläche A bis zu den Flächenmomenten 2. Grades Iy und Iz:
über Lame's Konstante
- ,
und dem linearen Werkstoffgesetz (Spannungs-Dehnungs-Beziehung / Hook's Gesetz)
- .
Und schließlich wollen wir die Verzerrungs-Verscheibungs-Beziehung für einen materiellen Punkt P angeben. Grundlage ist die Verschiebung eines Punkte P=[x,y,z] und die gesuchten Koeffizienten u, v, w der Verschiebung in die drei Raumrichtungen
- ,
Die Koeffizienten u(x,y,z), v(x,y,z), w(x,y,z) des Ortsvektors rP beschreiben dabei das Verscheibungsfeld des Balkens. Wir erhalten mit den allgemeinen Komponenten u, v und w des Verschiebungsfeldes
die Verzerrungen allgemein zu
- .
Damit das "schöner" aussieht,, kürzen wir im Folgenden ab
und erhalten als Verzerrungs-Verscheibungs-Beziehung
- .
Für unser Problem suchen wir jetzt ein konkretes Verschiebungsfeld, das unseren Anforderungen an das Problem genügt.
tmp
Euler Rotation
Text
Stress-Strain-Relations for a Rod
Text
Displacement Variables
Text
Virtual Strain Energy
Text
Timoshenko-Beam
Text
Euler-Bernoulli-Balken
Text
Links
- ...
Literature
- ...