Gelöste Aufgaben/TC12

Aus numpedia
Zur Navigation springen Zur Suche springen


Aufgabenstellung

Ein Stab ABC (E-Modul: E) besteht aus zwei Sektionen mit den Längen 1 bzw. 2 sowie den Flächenmomenten I1 bzw. I2. Die Sektionen haben jeweils einen quadratischen Querschnitt, Sektion AB ist durch eine konstante Streckenlast q0 belastet, in B wirkt das Moment MB0. Der Stab ist in A durch ein gelenkiges Festlager gelagert. In C ist das Stabende fest mit dem Umfang einer Rolle vom Radius r verbunden, die in D frei drehbar gelagert ist. In B sind die beiden Sektionen fest miteinander verbunden. Die Feder in B ist eine Translationsfeder mit der Steifigkeit  kB.

Interessant ist die kinematische Randbedingung aus der Rolle.


Lageplan

Gesucht ist die Analytische Lösung für den Euler-Bernoulli-Balken und die Verläufe der Schnittgrößen.

Parameter

Ermitteln Sie für ein Euler-Bernoulli-Modell die analytischen Verläufe der Schnittgrößen und Verschiebungen im Balken für diese Parameter:

Erstellen Sie dazu ein Programm, mit einem Euler-Bernoulli-Modell für die Berechnung der analytischen Verläufe der Schnittgrößen und Verschiebungen im Balken. Bestimmen Sie Querschnitts-Abmessungen der Sektionen so, dass die maximale Auslenkung des Systems 10 mm beträgt.

Lösung mit Maxima

Die Aufgabe ist ein klassisches Randwertproblem:

  1. zwei Gebiete, in denen ein Euler-Bernoulli-Balken in AB und BC durch eine Streckenlast q belastet ist (in Bereich II ist die Streckenlast allerdings Null) und somit durch die Differentialbeziehung

EIiwiIV(xi)=q(xi),i={1,2} berschrieben wird.

  1. Rand- und Übergangsbedingungen in den Punkten A, B, C

Wir verwenden xi und ξi als Koordinaten je Bereich, in der Übersicht sieht das Randwertproblem so aus:

Rand
A
Bereich IÜbergang
B
Bereich IIRand
C


tmp

Wir lösen die Feld-Differentialgleichung exakt und passen die Integrationskonstanten an die Rand- und Übergangsbedingungen an.

Header

Text


1+1




tmp

Wir definieren zunächst die bekannten Parameter zu

EI2=2EI12=12r=14MB=q012kB=3EI113wmax=90mm.

Weitere brauchen nicht.

Declarations

Text


1+1




tmp

In Bereich I und II gilt dieselbe Bewegungs-Differentialgleichung

EIiwiIV(xi)=q(xi),i={1,2} mit q(xi)=q0ϕ0(ξ)+q1ϕ1(ξ),

die wir durch Integration lösen und dann bereichsweise anpassen.

So gilt für Bereich II: q0 = 0.

Die allgemeine Lösung ist mit

... für Bereich I:

w1(x):=24C1,0+24C1,1x+12C1,2x2+4C1,3x3+q0x424EI1ϕ1(x):=24C1,1+24C1,2x+12C1,3x2+4q0x324EI1M1(x):=24C1,2+24C1,3x+12q0x224Q1(x):=24C1,3+24q0x24

... für Bereich II:

w2(x):=120l2C2,0+120l2C2,1x+60l2C2,2x2+20l2C2,3x3120l2EI2ϕ2(x):=120l2C2,1+120l2C2,2x+60l2C2,3x2120l2EI2M2(x):=120l2C2,2+120l2C2,3x120l2Q2(x):=C2,3.


Generic Solutions for Euler-Bernoulli-Beam

Text


1+1




tmp

Für die 2*4 = 8 Integrationskonstanten

[C1,0,C1,1,C1,2,C1,3,C2,0,C2,1,C2,2,C2,3]

suchen wir jetzt die passenden Gleichungen aus Rand- und Übergangsbedingungen.

Zur besseren Übersicht nennen wir die Schnitt-Momente und -Kräfte nach den jeweiligen Knotenpunkten A, B, C und fügen als Index ein + / - hinzu, um die Seite (+: rechts vom Knoten, -: links vom Knoten) zu kennzeichnen, wenn diese unterschiedlich sind.


Boundary Conditions

Text


1+1




tmp

Prepare for Solver

Text


1+1




tmp

Solving

Text


1+1




tmp

Post-Processing

Text


1+1






Links

  • ...

Literature

  • ...



Biegelinie w(x)
Biegemoment M(x)
Querkraft Q(x)
Lageplan
Kippung w'(x)