Gelöste Aufgaben/COVI

Aus numpedia
Zur Navigation springen Zur Suche springen


Aufgabenstellung

Als Ingenieure können wir die COVID-19-Epidemie genauso modellieren, wie technische Systeme.

Wir brauchen dazu "Koordinaten" - also Messgrößen - die die Anzahl der Individuen erfassen, die

  • ansteckbar "a",
  • infiziert "i" - mit und ohne Sympthome - und
  • genesen "r"

sind. Für jede dieser Koordinaten müssen wir nun "Bewegungsgleichungen" - also z.B. Differentialbeziehungen in der Zeit - hinschreiben.

Das nennen wir "Modellbildung".

🧨 Dies ist kein zuverlässiges Prognosewerkzweug:
Hier geht es um die Modellierung
  • der zeitlichen Zusammenhänge,
  • die Interpretation der Zustandsgrößen des Systems und
  • das Verständnis der Abläufe bei der Verbreitung des Virus in Abhängigkeit von zentralen Systemparametern.
Das Modell ist nicht dafür gemacht, um daraus quantitative Schlussfolgerungen zu ziehen.
COVID19
Numerische Lösung der COVID-19 Pandemmie als Anfangswertproblem.

Diese algebraischen und Differentialgleichungen sind dabei nicht das Ergebnis von Gleichgewichtsbeziehungen wie in der Technischen Mechanik. Wir begnügen uns statt dessen damit, Phänomene der Epidemie mit unserer Mathematik zu erfassen.

Und so gehen wir vor:

Wir modellieren eine Grundgesamtheit von n0 = 80 Millionen Individuen.

Die Pandemie soll bei einer Durchseuchung von α=50% zum Stillstand kommen - die Individuen sind dann so weit voneinander entfernt, dass eine Ansteckung unwahrscheinlich ist.

Zum Zeitpunkt t0=0 seien von insgesamt i0 Individuen mit

infiziert.

Lösung mit Matlab

Header

Wir lösen hier das Anfangswertproblem zu nichtlinearen Bewegungsgleichungen.

Diese Gleichungen haben wir nicht - wir entwickeln sie ad-hoc und achten nur darauf, zentrale Phänomene abzubilden. Eine Abbildung der realen Zahlen ist nicht beabsichtigt.


%*******************************************************
%* matlab script                                       *
%* version: R2020a                                     *
%* author: Andreas Baumgart                            *
%* last updated: 2020-03-25                            *
%* ref: Technische Mechanik mit Computer               *
%* description: COVID-19 Simulation                    *
%*              no spatial resoultion                  *
%*******************************************************




Declarations

Wir verwenden diese Parameter aus einer Tabelle

EXCEL-Datei mit Parametern

und erklären unten, wie wir sie einsetzten.


cd 'C:\Users\abs384\OneDrive\Confluence Sources\COVI'
addpath('.\functions')
 
% load parameters
parameter = readtable('parameter.xlsx');
for row=1:length(parameter.name)
   eval(strcat(char(parameter.name(row)),'=', num2str(parameter.zahl(row))))
end




Equations of Motion

Die Bewegungsgleichungen schreiben wir für die Anzahl der Individuen an,

  • die infiziert sind (Koordinate "i") und
  • die genesen sind (Koordinate "r").

Die Anzahl der Individuen, die sich noch anstecken können, ergibt sich dann aus

Unsere "Minimal-Koordinaten" des Systems sind also i und r.

Jetzt lassen wir unserer Fantasie freien Lauf:


function dydt = covid19(t,y,dt,DS,n,a0,lambda)
%   COVID19 Evaluate the COVID19 ODEs
%
%   last updated: 2020-03-24
%   author: Andreas Baumgart
 
% present state of pandemy
q = y(end,:);
% individuals left to be infected
a = n - sum(q);
 
% assign i=0 for t<0
if length(y)>DS
    i = y(end-DS,1);
else
    i=0;
end
% recovery rate
r = dt*lambda(2)*i;
      % infected                   % recovered
dydt=[dt*lambda(1)*q(1)*(a-a0)-r,  r          ];
 
end




Solving

1: Die Bewegungsgleichung für r

Die Änderung der Anzahl der Genesenen ist proportional zu Anzahl der Infizierten. Man könnte man also


anschreiben. Allerdings genesen zum Zeitpunkt t die Personen, die sich zum Zeitpunkt t-ΔT infiziert hatten. Dazwischen liegt gerade der gesamte Krankheitsverlauf mit der Dauer ΔT. Also schreiben wir


und nennen ΔT die Genesungsdauer - oder in Begriffen der Schwingungslehre: Totzeit (engl.: "dead-time").

2: Die Bewegungsleichungen für i

Die Änderung der Anzahl der Infizierten steigt mit der Anzahl der Infizierten i selbst und mit der Anzahl der ansteckbaren Individuen a. Sie reduziert sich um die Änderung der Anzahl der genesenen Individuen r. Allerdings weiß man aus Erfahrung, dass eine Epedemie endet, wenn ein bestimmter Durchseuchungsgrad α erreicht ist. Also wählen wir

.

Beim Auftragen des Produkts i∙(a-a0) unten erkennt man gut, wie die Funktion für i=0 und (a-a0)=0 Null liefert - also die Zuwachsrate der Infizierten Null ist, wenn niemand infiziert ist oder die Anzahl der ansteckbaren Individuen Null ist. Dazwischen steigt die Funktion steil an:


Damit haben wir zwei Bewegungsdifferentialgleichungen, die wir in die Matlab-Funktion "covid19" schrieben.

Die Bewegungsgleichungen machen wir dimensionslos mit


und erhalten als Bewegungsgleichungen

.




Postprocessing

.