Gelöste Aufgaben/FEB2

Aus numpedia
Zur Navigation springen Zur Suche springen


Aufgabenstellung

Die zwei Euler-Bernoulli-Balken AB (Länge a) und BC (Länge 2a) sind in B fest verschweißt. Ihre Biegesteifigkeit ist EI. Die Konstruktion ist in A fest eingespannt und in C durch ein verschiebliches Gelenklager gelagert. In B ist sie durch die Kraft F und das Moment M belastet.


Lageplan

Gesucht ist die Verschiebungen und Verdrehungen der Balken mit der Methode der Finiten ELemente.

Gegeben: a, E I, F, M

Lösung mit Maxima

Berechnet werden sollten daf[r die Auslenkungen und Verdrehung der Punkte A, B und C. Das Modell soll aus zwei Finiten Elementen bestehen, jeweils eins für den Abschnitt AB und BC. Die neutralen Fasern der beiden Balken seien in Längsrichtung undehnbar – die Querschnitts-Schwerpunkte verschieben sich also nicht in Balken-Längsrichtung.

Hier müssen die Element-Steifigkeitsmatrizen für zwei Sektionen von Euler-Bernoulli-Balken zusammengefügt (assembliert) werden. Die Schwierigkeit liegt darin, die Koordinaten in Punkt B passend zu wählen.===Header=== Text


1+1



))tmp)) Die Element-Steifigkeitsmatrix kopieren wir aus Abschnitt FEM-Formulierung für den Euler-Bernoulli-Balken zu:

.

Die Element-Längen der zwei Finiten Elemente sind hier

.


Zunächst hat das System mit zwei Finiten Elementen jeweils 4 Koordinaten, nämlich

.

Sektino AB Sektion BC
Die Sektion ist in A fest eingespannt, also ist hier

Es bleiben die Verschiebung und Verdrehung in B, also

.

Die neutralen Fasern der Balken-Sektionen - also auch von AB - sind undehnbar. Die Punkte B und C können sich also nur in vertikale Richtung jeweils um WB verschieben.  Durch diese Starrkörper-Verschiebung wird keine Arbeit geleistet - das tun nur die Lateral-Verschiebungen in w2(x2).

Es ist also

Es bleiben also die Verdrehungen in B und C zu

Übertragung der Koordinaten.

Die verbleibenden Koordinaten des Gesamtsystems sind

Das verformte System sieht dann so aus:

Verformte Lage.

===Coordinates===

Text


1+1




Wir bauen das Gleichungssystem

zusammen, indem wir die Anteile der Element-Steifigkeitsmatrizen und die äußeren Lasten in die jeweiligen System Matrizen hineinaddieren.

Die virtuelle Formänderungsenergie ist

  • für Sektion AB:

und

  • für Section BC:

Die Gesamt-Steifigkeitsmatrix aus Sektion AB (rot) und Sektion 2 (grün) ist damit

,

Die Spaltenmatrix der eingeprägten, äußeren Lasten auf das System kommt aus

zu

.===Assembly of System Matrices=== Text


1+1




Die Lösung des linearen Gleichungssystems lievert

===Solving=== Text


1+1




Solange

sieht das System im ausgelenkten Zustand so aus:

Lage des verformten Systems.

===Post/Processing===

Text


1+1




Links

  • ...

Literature

  • ...