Aufgabenstellung
SOME TEXT
Caption
Gesucht ist "SOME EXPLANATION"
Lösung mit Maxima
Lorem Ipsum ....
( 2 A 2 E η 3 ℓ 0 0 − ( 2 A 2 E η ℓ 0 2 ) 0 A 2 E η 3 ℓ 0 0 0 0 0 2 A 2 E η 3 ℓ 0 − ( A 2 E η 4 ℓ 0 2 ) − ( 3 A 2 E η 4 ℓ 0 2 ) A 2 E η 6 ℓ 0 − ( A 2 E η 2 ℓ 0 2 ) 0 A 2 E η 6 ℓ 0 − ( 2 A 2 E η ℓ 0 2 ) − ( A 2 E η 4 ℓ 0 2 ) A 2 E η + 3 ℓ 0 2 A E 2 ℓ 0 3 + 8 A 2 E η ℓ 0 3 0 − ( 2 A 2 E η ℓ 0 2 ) − ( A 2 E η + 3 ℓ 0 2 A E 4 ℓ 0 3 ) 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 A 2 E η 4 ℓ 0 2 0 − ( 3 A 2 E η 4 ℓ 0 2 ) 0 3 A 2 E η + ℓ 0 2 A E 2 ℓ 0 3 + 2 A E ℓ 0 − ( 3 A 2 E η 2 ℓ 0 2 ) 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 − ( 3 A 2 E η + ℓ 0 2 A E 4 ℓ 0 3 ) − ( 3 A 2 E η 4 ℓ 0 2 ) A 2 E η 3 ℓ 0 A 2 E η 6 ℓ 0 − ( 2 A 2 E η ℓ 0 2 ) − ( 3 A 2 E η 2 ℓ 0 2 ) 4 A 2 E η 3 ℓ 0 − ( A 2 E η 4 ℓ 0 2 ) 3 A 2 E η 4 ℓ 0 2 A 2 E η 6 ℓ 0 0 − ( A 2 E η 2 ℓ 0 2 ) − ( A 2 E η + 3 ℓ 0 2 A E 4 ℓ 0 3 ) 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 − ( A 2 E η 4 ℓ 0 2 ) A 2 E η + 3 ℓ 0 2 A E 4 ℓ 0 3 + A 2 E η ℓ 0 3 − ( 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 ) − ( 3 A 2 E η 4 ℓ 0 2 ) 0 0 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 − ( 3 A 2 E η + ℓ 0 2 A E 4 ℓ 0 3 ) 3 A 2 E η 4 ℓ 0 2 − ( 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 ) 3 A 2 E η + ℓ 0 2 A E 4 ℓ 0 3 + A E ℓ 0 3 A 2 E η 4 ℓ 0 2 0 A 2 E η 6 ℓ 0 A 2 E η 4 ℓ 0 2 − ( 3 A 2 E η 4 ℓ 0 2 ) A 2 E η 6 ℓ 0 − ( 3 A 2 E η 4 ℓ 0 2 ) 3 A 2 E η 4 ℓ 0 2 2 A 2 E η 3 ℓ 0 ) ⋅ ( W 1 , 0 U 1 , 0 Φ 1 , 0 W 2 , 0 U 2 , 0 Φ 2 , 0 W 3 , 0 U 3 , 0 Φ 3 , 0 W 4 , 0 U 4 , 0 Φ 4 , 0 ) = ( 0 0 0 0 0 F 0 0 )
Hier kommt jetzt irgendein Text.
S o m e T e x t
Title
Text
Element-Steigigkeitsmatrizen mit globalen Koordinaten
Element #1
k 1 = ( 8 A 2 E η ℓ 0 3 0 2 A 2 E η ℓ 0 2 − ( 8 A 2 E η ℓ 0 3 ) 0 2 A 2 E η ℓ 0 2 0 2 A E ℓ 0 0 0 − ( 2 A E ℓ 0 ) 0 2 A 2 E η ℓ 0 2 0 2 A 2 E η 3 ℓ 0 − ( 2 A 2 E η ℓ 0 2 ) 0 A 2 E η 3 ℓ 0 − ( 8 A 2 E η ℓ 0 3 ) 0 − ( 2 A 2 E η ℓ 0 2 ) 8 A 2 E η ℓ 0 3 0 − ( 2 A 2 E η ℓ 0 2 ) 0 − ( 2 A E ℓ 0 ) 0 0 2 A E ℓ 0 0 2 A 2 E η ℓ 0 2 0 A 2 E η 3 ℓ 0 − ( 2 A 2 E η ℓ 0 2 ) 0 2 A 2 E η 3 ℓ 0 )
Element #2
k 2 = ( A 2 E η + 3 ℓ 0 2 A E 4 ℓ 0 3 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 A 2 E η 4 ℓ 0 2 − ( A 2 E η + 3 ℓ 0 2 A E 4 ℓ 0 3 ) − ( 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 ) A 2 E η 4 ℓ 0 2 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 3 A 2 E η + ℓ 0 2 A E 4 ℓ 0 3 3 A 2 E η 4 ℓ 0 2 − ( 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 ) − ( 3 A 2 E η + ℓ 0 2 A E 4 ℓ 0 3 ) 3 A 2 E η 4 ℓ 0 2 A 2 E η 4 ℓ 0 2 3 A 2 E η 4 ℓ 0 2 A 2 E η 3 ℓ 0 − ( A 2 E η 4 ℓ 0 2 ) − ( 3 A 2 E η 4 ℓ 0 2 ) A 2 E η 6 ℓ 0 − ( A 2 E η + 3 ℓ 0 2 A E 4 ℓ 0 3 ) − ( 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 ) − ( A 2 E η 4 ℓ 0 2 ) A 2 E η + 3 ℓ 0 2 A E 4 ℓ 0 3 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 − ( A 2 E η 4 ℓ 0 2 ) − ( 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 ) − ( 3 A 2 E η + ℓ 0 2 A E 4 ℓ 0 3 ) − ( 3 A 2 E η 4 ℓ 0 2 ) 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 3 A 2 E η + ℓ 0 2 A E 4 ℓ 0 3 − ( 3 A 2 E η 4 ℓ 0 2 ) A 2 E η 4 ℓ 0 2 3 A 2 E η 4 ℓ 0 2 A 2 E η 6 ℓ 0 − ( A 2 E η 4 ℓ 0 2 ) − ( 3 A 2 E η 4 ℓ 0 2 ) A 2 E η 3 ℓ 0 )
Element #3
k 3 = ( A 2 E η + 3 ℓ 0 2 A E 4 ℓ 0 3 − ( 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 ) A 2 E η 4 ℓ 0 2 − ( A 2 E η + 3 ℓ 0 2 A E 4 ℓ 0 3 ) 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 A 2 E η 4 ℓ 0 2 − ( 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 ) 3 A 2 E η + ℓ 0 2 A E 4 ℓ 0 3 − ( 3 A 2 E η 4 ℓ 0 2 ) 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 − ( 3 A 2 E η + ℓ 0 2 A E 4 ℓ 0 3 ) − ( 3 A 2 E η 4 ℓ 0 2 ) A 2 E η 4 ℓ 0 2 − ( 3 A 2 E η 4 ℓ 0 2 ) A 2 E η 3 ℓ 0 − ( A 2 E η 4 ℓ 0 2 ) 3 A 2 E η 4 ℓ 0 2 A 2 E η 6 ℓ 0 − ( A 2 E η + 3 ℓ 0 2 A E 4 ℓ 0 3 ) 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 − ( A 2 E η 4 ℓ 0 2 ) A 2 E η + 3 ℓ 0 2 A E 4 ℓ 0 3 − ( 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 ) − ( A 2 E η 4 ℓ 0 2 ) 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 − ( 3 A 2 E η + ℓ 0 2 A E 4 ℓ 0 3 ) 3 A 2 E η 4 ℓ 0 2 − ( 3 A 2 E η − 3 ℓ 0 2 A E 4 ℓ 0 3 ) 3 A 2 E η + ℓ 0 2 A E 4 ℓ 0 3 3 A 2 E η 4 ℓ 0 2 A 2 E η 4 ℓ 0 2 − ( 3 A 2 E η 4 ℓ 0 2 ) A 2 E η 6 ℓ 0 − ( A 2 E η 4 ℓ 0 2 ) 3 A 2 E η 4 ℓ 0 2 A 2 E η 3 ℓ 0 )
Element #4
{k_4} = \begin{pmatrix}\frac{{{A}^{2}} E \eta }{{\ell_{0}^{3}}} & 0 & \frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}} & -\left( \frac{{{A}^{2}} E \eta }{{\ell_{0}^{3}}}\right) & 0 & \frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}}\\
0 & \frac{A E}Vorlage:\ell 0 & 0 & 0 & -\left( \frac{A E}Vorlage:\ell 0 \right) & 0\\
\frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}} & 0 & \frac{{{A}^{2}} E \eta }{3 {\ell_0}} & -\left( \frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}}\right) & 0 & \frac{{{A}^{2}} E \eta }{6 {\ell_0}}\\
-\left( \frac{{{A}^{2}} E \eta }{{\ell_{0}^{3}}}\right) & 0 & -\left( \frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}}\right) & \frac{{{A}^{2}} E \eta }{{\ell_{0}^{3}}} & 0 & -\left( \frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}}\right) \\
0 & -\left( \frac{A E}Vorlage:\ell 0 \right) & 0 & 0 & \frac{A E}Vorlage:\ell 0 & 0\\
\frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}} & 0 & \frac{{{A}^{2}} E \eta }{6 {\ell_0}} & -\left( \frac{{{A}^{2}} E \eta }{2 {\ell_{0}^{2}}}\right) & 0 & \frac{{{A}^{2}} E \eta }{3 {\ell_0}}\end{pmatrix}
Links
Literature