Gelöste Aufgaben/UEBO

Aus numpedia
Zur Navigation springen Zur Suche springen


Aufgabenstellung

Diese Problemstellung liefert einen Näherungsansatz für eine Standardlösung zum Euler-Bernoulli-Balken.

Der Euler-Bernoulli-Balken AB wird durch ein Moment M zwischen den beiden gelenkigen Lagern belastet. 


Lageplan

Gesucht ist eine Lösung für die Biegelinie mit dem Ansatz von Ritz und zwei Trial-Funktionen.

(Weg "1" wie in UEBH beschrieben.)

Lösung mit Maxima

Beim Verfahren von Ritz arbeiten wir mit

tmp

Wir berechnen die Potentielle Energie U des Systems in Abhängigkeit von den generalisierten Koordinaten Wi und erhalten aus

die Gleichung für den gesuchten Koeffizienten Wi der Trial-Funktionen.

Header

Text


1+1




tmp

Um die Lösung dimensionslos zu machen, nutzen wir die analytische Lösung des Problems , hier die Beträge der maximalen Auslenkung des Balkens für a = ℓ und der Verdrehung des Balkens am Momenten-Angriffspunkt für a = ℓ/2:


die maximale Auslenkung des Balkens für a=


die Verdrehung des Balkens am Momenten-Angriffspunkt für a=/2

Dimensionslose Orts-Koordinaten sind

.


Declarations

Text


1+1




tmp

Bei der Suche nach passenden Trial-Functions ϕ lassen wir uns ebenfalls von der analytischen Lösung des Problems "inspirieren":

Der Funktionsverlauf von wa hat zwei charakteristische Ausprägungen:

... für a=0... für a=ℓ/2
Diese Lösung - mit dem angreifenden Moment in A - hat eine starke symmetrische Komponente bzgl der Stab-Mitte. Diese Lösung - mit dem angreifenden Moment in der Stab-Mitte - ist punktsymmetrisch zum Momenten-Angriffspunkt.


Und so wählen wir unsere Trial-Functions als

.

Trial-Functions

Für α=7∙ℓ/10 sehen sie so aus;

Die Koeffizienten c1 und c2 haben wir dabei so gewählt, dass

.

Mit den neuen, gesuchten Wichtungsfaktoren qw und qϕ ist die Ansatzfunktion zur Lösung mit dem Verfahren von Rayleigh-Ritz damit

Aufgrund der gewählten Skalierungsfaktoren erwarten wir als Ergebnis näherungsweise

  • für α=½: qw ≈ 0 und qϕ ≈ 1,
  • für α= 0: qw ≈ 1 und qϕ ≈ 0.

Formfunctions

Text


1+1




tmp

Für die Gleichgewichtsbedingungen setzten wir Π (aus Abschnitt Euler-Bernoulli-Balken) und A in U ein und schreiben die skalare Gleichung allgemein in Matrizenform an. Dabei müssen wir

berücksichtigen und erhalten mit der Arbeitsfunktion des Moments

das Potential in Matrix-Schreibweise:

.

wobei

.

Einsetzen der Ansatzfunktion in die Formänderungsenergie und die Arbeitsfunktion liefert für die Matrizen A und b:

,

.


Potential Energy

Text


1+1




tmp

Diese Gleichung erfüllt die Gleichgewichtsbedingungen

,

wenn

.

Equilibrium Conditions

Text


1+1




tmp

Auflösen der Gleichungen nach den unbekannten Koordinaten qw und qϕ liefert

.

Damit ist die gesuchte Näherungs-Lösung

.


Solving

Text


1+1




tmp

Verlauf der Koordinaten qw, qϕ

Die gesuchten Koordinaten  qw und qΦ sind dimensionslos. Wir können sie direkt für verschiedene Werte von α auftragen.

Wir sehen:

  • für α=½: die Lösung wird - wie erwartet - nur durch ϕ2 beschreiben - also qw ≈ 0 und qϕ ≈ 1; allerdings ist die Qualität der Lösung mit qϕ = 1/4 sehr schlecht - hier drückt der Sprung in der Momenten-Kennlinie der analytischen Lösung auf das Ergebnis (s.u.).
  • für α= 0: die Lösung wird - wie erwartet - primär durch ϕ1 beschreiben, also qw ≈ 1 und qϕ ≈ 0. Hier zeigt die Lösung mit qw = 1.3 und qϕ = -0.5 einen recht großen Lösungs-Anteil der punktsymmetrischen Trial-Function.
Parameterstudie Biegelinie

Und so sieht die normierte Biegelinie des Balkens im Vergleich von Ritz-Näherung zu analytischer Lösung für verschiedene Werte von a aus:

Die dicken Linien gehören zu Näherung nach dem Ritz-Ansatz, die dünnen zur analytischen Lösung. Je weiter der Momenten-Angriffspunkt in die Balken-Mitte rückt und besonders für α=1/2 liefert der Ritz-Ansatz kein überzeugendes Ergebnis. Hier müssten wir mehr Trial-Functions "spendieren".

Vergleich: analytische / numerische Lösung für den Biegemomenten-Verlauf.


Post-Processing

Text


1+1





Links

  • ...

Literature

  • ...