Gelöste Aufgaben/Kw99
Aufgabenstellung
Ein Stab ABC ist durch eine lineare veränderliche Streckenlast q mit den Eckwerten qA in A und qB in B sowie dem Moment MB in B belastet. Der Stab (E-Modul: E) besteht aus zwei Sektionen mit den Längen l1 bzw. l2 sowie den Flächenmomenten I1 bzw. I2. Der Stab ist in A durch ein gelenkiges Festlager, in C durch eine Schiebehülse gelagert, in B sind die beiden Sektionen fest miteinander verbunden. Die Feder in A ist eine Drehfester mit Steifigkeit KA, die Federn in B und C sind Translationsfedern mit den Steifigkeiten kB, kC.
Gesucht ist die analytische Lösung für den Euler-Bernoulli-Balken. Im Vergleich zu Kw98 wird hier eine Lösung mit normierten Koordinaten verfolgt.
Ermitteln Sie für ein Euler-Bernoulli-Modell die analytischen Verläufe der Schnittgrößen und Verschiebungen im Balken für diese Parameter:
Lösung mit Maxima
Die Aufgabe ist ein klassisches Randwertproblem:
- zwei Gebiete, in denen ein Euler-Bernoulli-Balken in AB und BC durch eine Streckenlast q belastet ist (in Bereich II ist die Streckenlast allerdings Null) und somit durch die Differentialbeziehung
berschrieben wird. - Rand- und Übergangsbedingungen in den Punkten A, B, C
Wir verwenden xi und ξi als Koordinaten je Bereich, in der Übersicht sieht das Randwertproblem so aus:
Rand A | Bereich I | Übergang B | Bereich II | Rand C |
---|---|---|---|---|
Header
Diese Aufgabe wird mit der Methode der Finiten Elemente in KW96 gelöst. Und im Vergleich zu KW98 wird hier die analytische Lösung mit dimensionslosen Koordinaten angeschreiben.
/*******************************************************/
/* MAXIMA script */
/* version: wxMaxima 15.08.2 */
/* author: Andreas Baumgart */
/* last updated: 2017-09-06 */
/* ref: TM-C, Labor 1 - dimensionslos */
/* description: die Auslenkung w und die unabhängige */
/* Ortskoordinate werden dim'los gemacht */
/*******************************************************/
Declarations
Wir definieren die Formfunktionen für die Streckenlast
- .
/* system parameter */
params: [EI[2]=EI[1]/2,
K[A]=EI[1]/l[1],
k[B]=0,
k[C] = EI[1]/l[1]^3,
q[B]=4*q[A],
l[2]=l[1]/2,
M[B] = 5*q[A]*l[1]^2];
/* form - functions */
phi[0](xi) := 1 - xi;
phi[1](xi) := xi;
Integration of Differential Equation to Formfunction
Y
Y
Für die 2*4 = 8 Integrationskonstanten
suchen wir jetzt die passenden Gleichungen aus Rand- und Übergangsbedingungen.
Zur besseren Übersicht nennen wir die Schnitt-Momente und -Kräfte nach den jeweiligen Knotenpunkten A, B, C und fügen als Index ein + / - hinzu, um die Seite (+: rechts vom Knoten, -: links vom Knoten) zu kennzeichnen.
Aus Rand "A"
Geometrische Randbedingungen
Kraft- und Momenten-Randbedingungen |
Aus Übergang "B"
Geometrische Randbedingungen
Kraft- und Momenten-Randbedingungen |
Aus Rand "C"
Geometrische Randbedingungen
Kraft- und Momenten-Randbedingungen |
Und das liefert das Gleichungssystem aus 8 Gleichungen
für die Integrationskonstanten.
Boundary Conditions
...
1+1
Prepare for Solver
...
}}
<!-------------------------------------------------------------------------------->
Das Lösen des Gleichungssystems liefert
::<math>\begin{array}{l} {{C}_{1,0}}=0,\\{{C}_{1,1}}=246.1 \; N {{m}^{2}},\\{{C}_{1,2}}=703.2\; N m,\\{{C}_{1,3}}=-2404.3\; N,\\{{C}_{2,0}}=127.6 \; N m^3,\\{{C}_{2,1}}=224.7\; N m^2,\\{{C}_{2,2}}=-979.8 \; N m,\\{{C}_{2,3}}=2101.8 N \end{array}</math>.
{{MyCodeBlock|title=Solving
|text=...
|code=
<syntaxhighlight lang="lisp" line start=1>
1+1
Post-Processing
Und die Ergebnisse können wir uns anschauen ...
... für w(x):
... für Φ(x):
... für M(x):
... für Q(x):
... für die Lager-Reaktionskräfte:
/* bearing forces and moments */
reactForces: [A[z] = Q[1](0),
M[A] = K[A]*Phi[1](0),
B[z] = k[B]*w[2](0),
C[z] = k[C]*w[2](1),
M[C] = M[2](1)];
expand(subst(dimless,subst(params,subst(sol, reactForces))));
/* plot displacements */
fcts: [[ w [1](xi), w [2](xi)],
[Phi[1](xi),Phi[2](xi)],
[ M [1](xi), M [2](xi)],
[ Q [1](xi), Q [2](xi)]];
facts: [1/l[Bez], l[1]/l[Bez], 1/(q[A]*l[1]^2), 1/(q[A]*l[1])];
textlabels : ["w(x)/(M[B]*l^2/EI[1])→", "w'(x)/(M[B]*l/EI[1])→", "M(x)/M[B]→", "Q(x)/(M[B]/l[1]→"];
for i: 1 thru 4 do(
f : expand(subst(dimless,subst(params,facts[i]*[subst(sol, fcts[i][1]),
subst(sol, fcts[i][2])]))),
r : subst(params,l[2]/l[1]),
preamble: if i<=2 then "set yrange [] reverse" else "set yrange []",
plot2d([[parametric, t, subst(t,xi,f[1]), [t,0,1]],
[parametric, 1+r*t, subst(t,xi,f[2]), [t,0,1]]],
[legend, "sec. I", "sec. II"],
[gnuplot_preamble, preamble],
[xlabel, "x/l[1] ->"],
[ylabel, textlabels[i]]))$
Links
- ...
Literature
- ...