Gelöste Aufgaben/Kw98
Aufgabenstellung
Ein Stab ABC ist durch eine lineare veränderliche Streckenlast q mit den Eckwerten qA in A und qB in B sowie dem Moment MB in B belastet. Der Stab (E-Modul: E) besteht aus zwei Sektionen mit den Längen l1 bzw. l2 sowie den Flächenmomenten I1 bzw. I2. Der Stab ist in A durch ein gelenkiges Festlager, in C durch eine Schiebehülse gelagert, in B sind die beiden Sektionen fest miteinander verbunden. Die Feder in A ist eine Drehfester mit Steifigkeit KA, die Federn in B und C sind Translationsfedern mit den Steifigkeiten kB, kC.

Gesucht ist die analytische Lösung für den Euler-Bernoulli-Balken.

Ermitteln Sie für ein Euler-Bernoulli-Modell die analytischen Verläufe der Schnittgrößen und Verschiebungen im Balken für diese Parameter:
Lösung mit Maxima
Die Aufgabe ist ein klassisches Randwertproblem:
- zwei Gebiete, in denen ein Euler-Bernoulli-Balken in AB und BC durch eine Streckenlast q belastet ist (in Bereich II ist die Streckenlast allerdings Null) und somit durch die Differentialbeziehungberschrieben wird.
- Rand- und Übergangsbedingungen in den Punkten A, B, C
Wir verwenden xi und ξi als Koordinaten je Bereich, in der Übersicht sieht das Randwertproblem so aus:
Rand A | Bereich I | Übergang B | Bereich II | Rand C |
---|---|---|---|---|
![]() | ![]() | |||
![]() | ![]() | ![]() |
tmp
Diese Aufgabe mit der Methode der Finiten Elemente in KW96 gelöst.
Header
Text
1+1
tmp
Declarations
Text
1+1
tmp
In Bereich I und II gilt dieselbe Bewegungs-Differentialgleichung
,
die wir durch Integration lösen und dann bereichsweise anpassen.
So gilt für Bereich II: q0 = 0 und q1 = 0.
Die allgemeine Lösung ist mit
... für Bereich I:
... für Bereich II:
Formfunctions
Text
1+1
tmp
Für die 2*4 = 8 Integrationskonstanten
suchen wir jetzt die passenden Gleichungen aus Rand- und Übergangsbedingungen.
Zur besseren Übersicht nennen wir die Schnitt-Momente und -Kräfte nach den jeweiligen Knotenpunkten A, B, C und fügen als Index ein + / - hinzu, um die Seite (+: rechts vom Knoten, -: links vom Knoten) zu kennzeichnen.
Aus Rand "A"
![]() | Geometrische Randbedingungen
Kraft- und Momenten-Randbedingungen |
Aus Übergang "B"
![]() | Geometrische Randbedingungen
Kraft- und Momenten-Randbedingungen |
Aus Rand "C"
![]() | Geometrische Randbedingungen
Kraft- und Momenten-Randbedingungen |
Und das liefert das Gleichungssystem aus 8 Gleichungen
für die Integrationskonstanten.
Boundary Conditions
Text
1+1
tmp
Das Gleichungssystem wollen wir als
schreiben, also
Die Matrix-Elemente sind für die Koeffizientenmatrix
und für die rechte Seite
Prepare for Solver
Text
1+1
tmp
Das Lösen des Gleichungssystems liefert
Solving
Text
1+1
tmp
Und die Ergebnisse können wir uns anschauen ...
... für w(x):

... für Φ(x):

... für M(x):

... für Q(x):

Post-Processing
Text
1+1
Links
- ...
Literature
- ...