Gelöste Aufgaben/Kw27
Aufgabenstellung
Scheibenwischer können auf einer Windschutzscheibe laute "Rubbel"-Geräusche erzeugen - eine Bewegung, die sich selbsterregt aus dem Zusammenspiel eines schwingungsfähigen Systems und einer Reibkennlinie ergibt.
Für ein einfaches Ersatz-System modellieren wir den Wischer-Arm als zwei parallele, masselose Blatt-Federn (Euler-Bernoulli-Balken mit Biegesteifigkeit jeweils EI1 und EI2 bzgl der Auslenkung senkrecht zur Scheibe und tangential dazu) und idealisieren das Wischerblatt durch eine Punktmasse (Masse m). Zwischen der Lippe des Scheibenwischers und der Windschutzscheibe wirkt eine Tangentialkraft aus trockener Reibung (μ, μ0).
Gesucht ist die selbsterregte Schwingung des Wischerblatts beim "Rubbeln" auf der Windschutzscheibe. Simulieren Sie dazu "Stick-Slip"-Schwingungen des Systems.
Lösung mit Maxima
Lorem Ipsum ....
tmp
"Stick-Slip" Schwingungen sind klassische selbsterregte Schwingungen. Selbsterrung heißt: das System lenkt den Energiefluss im System so, dass Schwingungen "aus sich heraus" angeregt werden. Charakteristisch für "Stick-Slip" Schwingungen ist, dass zwei Körper zeitweise aneinander haften, auseinander gerissen werden und dann aneinander reiben - bis sie wieder aneinander haften.
Header
Text
1+1
tmp
Im Zentrum dieser Aufgabe steht die Kennlinie (engl.: Characteristic), die den Zusammenhang zwischen Tangentialkräft (Haftkraft, Reibkraft), Normalkraft und Relativgeschwindigkeit zwischen Wischer-Lippe und Windschutzscheibe erfasst.
Trockene Reibung im Modell beschreibt man mit zwei System-Parametern:
- dem Reibungskoeffizient μ und
- dem Haftungskoeffizient μ0.
und es gilt
- 'μ0' >μ.
Wir arbeiten mit dem Ersatz-System rechts:
Declarations
Text
1+1
tmp
Die Kennlinie für die Reibkraft
kopieren wir mit der Funktion für den den Reibungskoeffizienten
aus Abschnitt Reibkennlinie stückweise mit Polynomen 2ten und 3ten Grades zu
Sie muss punkt-symmetrisch sein (die Reibkraft ändert ihr Vorzeichen mit der Orientierung der Relativgeschwindigkeit) und sie enthält den Sonderfall "Haften" für
Friction Characteristic
Text
1+1
tmp
Zwei Gleichgewichtsbedingungen brauchen wir:
- für die Normalkraft N und
- die Bewegungsgleichung der Masse m.
Die Normalkraft N erhalten wir aus den Standard-Lösungen bzw. deren Ersatzfeder-Steifigkeiten für den Euler-Bernoulli-Balken zu .
Für die Bewegungsgleichung des Systems wählen wir als Koordinaten die elastische Verformung des Wischer-Arms in B, positiv in Richtung der Drehbewegung. Wir gehen davon aus, dass der Wischer in A mit der konstanten Geschwindigkeit Ω gedreht wird, die Punktmasse m also den Weg
zurücklegt.
Aus dem Kräftegleichgewicht an der Masse schreiben wir (mit dem Prinzip von d'Alembert)
an.
Die Kennlinie für die Reibkraft R haben wir dafür oben schon festgelegt.
Die Rückstellkraft F2 der beiden Blattfedern ist
mit
.
Dimensionslos machen wir die Bewegungsgleichung mit
- der Referenzzeit T aus der Eigenkreisfrequenz des Wischerblattes ohne Reibung zu
mit der Eigenkreisfrequenz des frei schwingenden Körpers (R=0) und
- der Referenz-Länge .
Dann ist die dimensionslose Auslenkung U = u/ℓ und die dimensionslose Zeit τ = t/T. Entsprechend gilt auch
Einsetzten liefert die Bewegungsgleichung
mit
.
Equilibrium Conditions
Text
1+1
tmp
Für die numerische Lösung transformieren wir auf eine Differentialgleichung erster Ordnung
die wir als Anfangswertproblem
mit
lösen. Als Anfangsbedingungen wählen wir zwei aus, nämlich
und .
Als zweite Anfangsbedingung haben wir dabei das V so gewählt, dass die Relativgeschwindigkeit zwischen Lippe und Scheibe gerade Null ist, also
gilt.
Solving
Text
1+1
tmp
Für die zwei Anfangsbedingungen finden wir diese Auslenkungen U(τ):
Unabhängig von den Anfangsbedingungen läuft das System sofort in die "Stick-Slip" Schwingung hinein.
Hier erkennt man gut, wie die Lippe am der Scheibe haften bleibt - für V=-π/50 sind Band und Körper-Geschwindigkeit gleich.
Post-Processing
Text
1+1
Links
- ...
Literature
- ...