Gelöste Aufgaben/DGEB: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Zeile 3: Zeile 3:
[[Category:Stab]]
[[Category:Stab]]
[[Category:Prinzip_der_virtuellen_Verrückungen]]
[[Category:Prinzip_der_virtuellen_Verrückungen]]
[[Koordinaten]]
[[Koordinate]]
==Aufgabenstellung==
==Aufgabenstellung==
In dieser Aufgabe starten wir von "first principles" - hier das [[Werkzeuge/Gleichgewichtsbedingungen/Arbeitsprinzipe der Analytischen Mechanik/Prinzip der virtuellen Verrückungen|Prinzip der virtuellen Verrückungen]] - und entwicklen die Bewegungsgleichunge für einen schlanken Stab unter Langskräft und Biegemoment.
In dieser Aufgabe starten wir von "first principles" - hier das [[Werkzeuge/Gleichgewichtsbedingungen/Arbeitsprinzipe der Analytischen Mechanik/Prinzip der virtuellen Verrückungen|Prinzip der virtuellen Verrückungen]] - und entwicklen die Bewegungsgleichunge für einen schlanken Stab unter Langskräft und Biegemoment.

Version vom 23. Februar 2021, 09:48 Uhr

Koordinate

Aufgabenstellung

In dieser Aufgabe starten wir von "first principles" - hier das Prinzip der virtuellen Verrückungen - und entwicklen die Bewegungsgleichunge für einen schlanken Stab unter Langskräft und Biegemoment.

Lageplan.

Gesucht sind die Differentialgleichungen des statischen Gleichgewichts für den schlanken Stab mit Rechteck-Querschnitt unter Längs- und Querkraft, ausgehend von der Virtuellen Formänderungsenergie δΠ.

Wir finden so die bekannten Differentialbeziehungen für das Timoshenko / Euler-Bernoulli-Modell eines Balkens.


Lösung mit Maxima

Wie alle zentralen Begriffe der Elastizitätstheorie ineinandergreifen, um die virtuelle Formänderungsenergie für den Euler-Bernoulli-Balken zu ermitteln, zeigt diese Aufgabe.

Header

Hier kommen

zum Einsatz.


/*******************************************************/
/* MAXIMA script                                       */
/* version: wxMaxima 15.08.2                           */
/* author: Andreas Baumgart                            */
/* last updated: 2016-03-27                            */
/* ref: Euler-Bernoulli Beam                           */
/* description: derives the equations of motion for    */
/*              the Timoshenko and EBB beam            */
/*******************************************************/



Declarations

Text


1+1



Euler Rotation

Text


1+1



Stress-Strain-Relations for a Rod

Text


1+1



Displacement Variables

Text


1+1



Virtual Strain Energy

Text


1+1



Timoshenko-Beam

Text


1+1



Euler-Bernoulli-Balken

Text


1+1





Links

  • ...

Literature

  • ...