Void: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 33: Zeile 33:
Für einen geraden Stab sieht eine Diskretisierung - hier mit gleich langen - Finiten Elementen so aus:  
Für einen geraden Stab sieht eine Diskretisierung - hier mit gleich langen - Finiten Elementen so aus:  


Der Ansatz - hier für einen Euler-Bernoulli-Balken - ist wieder allgemein
Der Ansatz - hier für einen [[Sources/Lexikon/Euler-Bernoulli-Balken|Euler-Bernoulli-Balken]] - ist wieder allgemein




Zeile 46: Zeile 46:


=== Schalen-Modelle ===
=== Schalen-Modelle ===
Bei Schalen-Modellen für ebene Strukturen müssen wir Verschiebungen und/oder Verdrehungen als Funktion von zwei unabhängigen Variablen - z.B. ''x'' und ''y'' - ausdrücken.
Bei [[Sources/Lexikon/Schale|Schalen-Modellen]] für ebene Strukturen müssen wir Verschiebungen und/oder Verdrehungen als Funktion von zwei unabhängigen Variablen - z.B. ''x'' und ''y'' - ausdrücken.




Zeile 66: Zeile 66:
::<math>\underline{Q} = \left(\begin{array}{c}\underline{u}_{00}\\\vdots\\\underline{u}_{ij} \\ \vdots \end{array}\right)</math>
::<math>\underline{Q} = \left(\begin{array}{c}\underline{u}_{00}\\\vdots\\\underline{u}_{ij} \\ \vdots \end{array}\right)</math>


 
Mit [[Randwertprobleme/Methoden zur Lösung von Randwertproblemen/Finite Elemente Methode/FEM: Trial-Functions für lineare Ansatz-Polynome|linearen Trial-Functions]] wird die Näherungslösung je Element dann aus diesen Formen zusammengesetzt sein:
Mit linearen Trial-Functions wird die Näherungslösung je Element dann aus diesen Formen zusammengesetzt sein:
{| class="wikitable"
{| class="wikitable"
|+
|+
Zeile 119: Zeile 118:


* Strang 2008
* Strang 2008
'''Untergeordnete Seiten'''
<splist
showparent=no
sort=asc
sortby=title
liststyle=ordered
showpath=no
kidsonly=yes
debug=0
>





Version vom 22. Februar 2021, 06:59 Uhr

Grundlagen

Die Methode der Finiten Elemente (FEM) arbeitet mit dem Prinzip der virtuellen Verrückungen für die Gleichgewichtsbedingungen und einfachen, lokalen Polynom-Ansätzen.

Für die Gleichgewichtsbedingung brauchen wir die allgemeinen Terme der virtuellen Arbeit des Systems

wobei δΠ die Virtuelle Formänderungsenergie ist und δWa die virtuelle Arbeit von äußeren, eingeprägten Lasten.

Darin ist z.B. für den Euler-Bernoulli-Balken

Die gesamte Virtuelle Formänderungsarbeit setzt sich damm additiv aus den Anteilen aller N elastischen Bauteile zusammen, also

Die Arbeit von äußeren, eingeprägten Kräften ist beispielsweise

Das δΠ sieht ganz ähnlich aus wie die Formänderungsenergie Π der Potentiellen Energie - hier fehlt allerdings der Faktor 1/2!

Der Prozess, in dem wir eine Striktur in Finite Elemente unterteilen, nennen wir Diskretisierung. Denn an dieser Stellen werden aus den unendlich vielen Freiheitsgraden endlich viele.

Als Trial-Formfunktionen für die Approximation der exakten Lösung wählen wir Polynome, die wir in die Raumrichtungen aneinanderstückeln - und zwar immer wieder die selben! Jeder  Abschnitt des Struktur,, in dem wir eine Trial-Funktion ansetzen, nennen wir Finites Element, jede "Stoßstelle" zwischen den Elementen nennen wir Node (Knoten). Was hier wenig dramatisch daherkommt, ist die Grundlage für den unglaublichen Erfolg der FEM:

  • Wiederholung: Alle Trial-Funktionen sind gleich!
  • Simplizität: Jede Trial-Funktion ist ein sehr einfaches Polynom - oft reicht erster Ordnung!
  • Skalierbarkeit: die Genauigkeit steigern wir durch die Unterteilung in kleinere Finite Elemente!

Stab-Modelle

Für einen geraden Stab sieht eine Diskretisierung - hier mit gleich langen - Finiten Elementen so aus:

Der Ansatz - hier für einen Euler-Bernoulli-Balken - ist wieder allgemein


wobei die ϕi die linear unabhängigen Trial-Funktionen und die Qi ihre gesuchten "Wichtungsfaktoren" - hier: die gesuchten Auslenkungen und/oder Verdrehungen an den Knoten - sind.

Statt Polynome zu wählen, die sich über die gesamte Stab-Länge erstrecken wie beim Verfahren von Ritz, wählen wir hier lokale Ansatzfunktionen je Element, also


Schalen-Modelle

Bei Schalen-Modellen für ebene Strukturen müssen wir Verschiebungen und/oder Verdrehungen als Funktion von zwei unabhängigen Variablen - z.B. x und y - ausdrücken.



Als Ansatz für eine ebene Scheibe sind die Verschiebungen in der der Schalen-Ebene in die beiden Raumrichtungen

In den Knoten-Verschiebungen uij stehen dann die beiden Knoten-Verschiebungen Qij, Qkl, also

die wir wiederum in die Spaltenmatrix der gesuchten Größen Q einsortieren:


Mit linearen Trial-Functions wird die Näherungslösung je Element dann aus diesen Formen zusammengesetzt sein:

x y

Das Gleichungssystem für lineare Bewegungsgleichungen

Weil die Ansatzfunktionen nur im Element gelten, ist

die Summe aller virtuellen Formänderungs-Energien aller Elemente.

Einsetzen und Ausführen der Integration in δΠ führt bei linearen Systemen (wir betrachten nur lineare Systeme) immer auf die Form



und δWa hat in der Statik immer die Form

also

Die Gleichgewichtsbedingungen des Prinzip der virtuellen Verrückungen lauten:

und das sind mehrere, denn:

  • die einzelnen virtuellen Verrückungen in δW sind jeweils für sich unabhängig. Die Summe der

    wird nur dann Null, wenn die Klammerausdrücke jeweils für sich verschwinden (Null werden).
  • Wir erhalten also ganz automatisch für jede unbekannte Koordinate eine Gleichgewichtsbedingung.

Ansatzfunktionen

Finite Elemente benutzen besondere Trial-Functions um die Verschiebungen einer Struktur sehr effizient abbilden zu können. Dies sind

  • Trial-Functions für lineare Ansatz-Polynome
  • Trial-Functions für kubische Ansatz-Polynome

Im Vergleich: das Verfahren von Ritz und die Methode der Finite Elemente

Literatur

  • Strang 2008

Untergeordnete Seiten

<splist showparent=no sort=asc sortby=title liststyle=ordered showpath=no kidsonly=yes debug=0 >


Links

Finite-Elemente-Methode