Void: Unterschied zwischen den Versionen
Zeile 55: | Zeile 55: | ||
Bei Schalen-Modellen für ebene Strukturen müssen wir Verschiebungen und/oder Verdrehungen als Funktion von zwei unabhängigen Variablen - z.B. ''x'' und ''y'' - ausdrücken. | Bei Schalen-Modellen für ebene Strukturen müssen wir Verschiebungen und/oder Verdrehungen als Funktion von zwei unabhängigen Variablen - z.B. ''x'' und ''y'' - ausdrücken. | ||
XXX | |||
Als Ansatz für eine ebene Scheibe sind die Verschiebungen in der der Schalen-Ebene in die beiden Raumrichtungen | Als Ansatz für eine ebene Scheibe sind die Verschiebungen in der der Schalen-Ebene in die beiden Raumrichtungen | ||
XXX | |||
In den Knoten-Verschiebungen ''u<sub>ij</sub>'' stehen dann die beiden Knoten-Verschiebungen ''Q<sub>ij</sub>, Q<sub>kl</sub>'', also | |||
XXX | |||
die wir wiederum in die Spaltenmatrix der gesuchten Größen ''Q'' einsortieren: |
Version vom 22. Februar 2021, 06:33 Uhr
Grundlagen
Die Methode der Finiten Elemente (FEM) arbeitet mit dem Prinzip der virtuellen Verrückungen für die Gleichgewichtsbedingungen und einfachen, lokalen Polynom-Ansätzen.
Für die Gleichgewichtsbedingung brauchen wir die allgemeinen Terme der virtuellen Arbeit des Systems
Für die Gleichgewichtsbedingung brauchen wir die allgemeinen Terme der virtuellen Arbeit des Systems
wobei δΠ die Virtuelle Formänderungsenergie ist und δWa die virtuelle Arbeit von äußeren, eingeprägten Lasten.
Darin ist z.B. für den Euler-Bernoulli-Balken
Die gesamte Virtuelle Formänderungsarbeit setzt sich damm additiv aus den Anteilen aller N elastischen Bauteile zusammen, also
Die Arbeit von äußeren, eingeprägten Kräften ist beispielsweise
Das δΠ sieht ganz ähnlich aus wie die Formänderungsenergie Π der Potentiellen Energie - hier fehlt allerdings der Faktor 1/2!
Der Prozess, in dem wir eine Striktur in Finite Elemente unterteilen, nennen wir Diskretisierung. Denn an dieser Stellen werden aus den unendlich vielen Freiheitsgraden endlich viele.
Als Trial-Formfunktionen für die Approximation der exakten Lösung wählen wir Polynome, die wir in die Raumrichtungen aneinanderstückeln - und zwar immer wieder die selben! Jeder Abschnitt des Struktur,, in dem wir eine Trial-Funktion ansetzen, nennen wir Finites Element, jede "Stoßstelle" zwischen den Elementen nennen wir Node (Knoten). Was hier wenig dramatisch daherkommt, ist die Grundlage für den unglaublichen Erfolg der FEM:
- Wiederholung: Alle Trial-Funktionen sind gleich!
- Simplizität: Jede Trial-Funktion ist ein sehr einfaches Polynom - oft reicht erster Ordnung!
- Skalierbarkeit: die Genauigkeit steigern wir durch die Unterteilung in kleinere Finite Elemente!
Stab-Modelle
Für einen geraden Stab sieht eine Diskretisierung - hier mit gleich langen - Finiten Elementen so aus:
Der Ansatz - hier für einen Euler-Bernoulli-Balken - ist wieder allgemein
XXX
wobei die ϕi die linear unabhängigen Trial-Funktionen und die Qi ihre gesuchten "Wichtungsfaktoren" - hier: die gesuchten Auslenkungen und/oder Verdrehungen an den Knoten - sind.
Statt Polynome zu wählen, die sich über die gesamte Stab-Länge erstrecken wie beim Verfahren von Ritz, wählen wir hier lokale Ansatzfunktionen je Element,
also
XXX
Schalen-Modelle
Bei Schalen-Modellen für ebene Strukturen müssen wir Verschiebungen und/oder Verdrehungen als Funktion von zwei unabhängigen Variablen - z.B. x und y - ausdrücken.
XXX
Als Ansatz für eine ebene Scheibe sind die Verschiebungen in der der Schalen-Ebene in die beiden Raumrichtungen
XXX
In den Knoten-Verschiebungen uij stehen dann die beiden Knoten-Verschiebungen Qij, Qkl, also
XXX
die wir wiederum in die Spaltenmatrix der gesuchten Größen Q einsortieren: