Gelöste Aufgaben/COVI: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „= Aufgabenstellung = Als Ingenieure können wir die COVID-19-Epidemie genauso modellieren, wie technische Systeme. Wir brauchen dazu "Koordinaten" - also Mess…“) |
|||
Zeile 39: | Zeile 39: | ||
infiziert. | infiziert. | ||
== Lösung mit Maxima == | |||
{| class="wikitable" | |||
|+ | |||
!Header | |||
! | |||
|- | |||
|Wir lösen hier das Anfangswertproblem zu nichtlinearen Bewegungsgleichungen. | |||
Diese Gleichungen haben wir nicht - wir entwickeln sie ad-hoc und achten nur darauf, zentrale Phänomene abzubilden. Eine Abbildung der realen Zahlen ist nicht beabsichtigt. | |||
|<blockquote> | |||
%******************************************************* | |||
%* matlab script * %* version: R2020a * | |||
%* author: Andreas Baumgart * | |||
%* last updated: 2020-03-25 * | |||
%* ref: Technische Mechanik mit Computer * | |||
%* description: COVID-19 Simulation * | |||
%* no spatial resoultion * %******************************************************* | |||
</blockquote> | |||
|- | |||
| | |||
| | |||
|- | |||
| | |||
| | |||
|} |
Version vom 15. Februar 2021, 09:18 Uhr
Aufgabenstellung
Als Ingenieure können wir die COVID-19-Epidemie genauso modellieren, wie technische Systeme.
Wir brauchen dazu "Koordinaten" - also Messgrößen - die die Anzahl der Individuen erfassen, die
- ansteckbar "a",
- infiziert "i" - mit und ohne Sympthome - und
- genesen "r"
sind. Für jede dieser Koordinaten müssen wir nun "Bewegungsgleichungen" - also z.B. Differentialbeziehungen in der Zeit - hinschreiben.
Das nennen wir "Modellbildung".
Hier geht es um die Modellierung
Das Modell ist nicht dafür gemacht, um daraus quantitative Schlussfolgerungen zu ziehen. |
Diese algebraischen und Differentialgleichungen sind dabei nicht das Ergebnis von Gleichgewichtsbeziehungen wie in der Technischen Mechanik. Wir begnügen uns statt dessen damit, Phänomene der Epidemie mit unserer Mathematik zu erfassen.
|
Und so gehen wir vor:
Wir modellieren eine Grundgesamtheit von n0 = 80 Millionen Individuen.
Die Pandemie soll bei einer Durchseuchung von α=50% zum Stillstand kommen - die Individuen sind dann so weit voneinander entfernt, dass eine Ansteckung unwahrscheinlich ist.
Zum Zeitpunkt t0=0 seien von insgesamt n0 Individuen
i0=1000
infiziert.
Lösung mit Maxima
Header | |
---|---|
Wir lösen hier das Anfangswertproblem zu nichtlinearen Bewegungsgleichungen.
Diese Gleichungen haben wir nicht - wir entwickeln sie ad-hoc und achten nur darauf, zentrale Phänomene abzubilden. Eine Abbildung der realen Zahlen ist nicht beabsichtigt. |
|