Randwertprobleme/Methoden zur Lösung von Randwertproblemen/Finite Elemente Methode: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Zeile 54: Zeile 54:
Das Gesamt-Gleichungssystem komponieren wir, indem die Element-Steifigkeitsmatrizen je Bauteil nach einem festen Schema in ''K'' hineinkopiert werden:
Das Gesamt-Gleichungssystem komponieren wir, indem die Element-Steifigkeitsmatrizen je Bauteil nach einem festen Schema in ''K'' hineinkopiert werden:


[[Datei:FiniteElementeMethode-PreviewVideo.png|verweis=Datei:BVP-FEM.mp4|alternativtext=|links|mini|250x250px|Prozessschema FEM]]<brclear="all"/>
[[Datei:FiniteElementeMethode-PreviewVideo.png|verweis=Datei:BVP-FEM.mp4|alternativtext=|links|mini|250x250px|Prozessschema FEM]]<br clear="all"/>


Es bleibt noch, die Randbedingungen in das System einzuarbeiten: das machen wir durch Streichen der Zeilen und Spalten des Gleichungssystems, die zu Koordinaten gehören, die aufgrund der Lagerung des Systems behindert sind:
Es bleibt noch, die Randbedingungen in das System einzuarbeiten: das machen wir durch Streichen der Zeilen und Spalten des Gleichungssystems, die zu Koordinaten gehören, die aufgrund der Lagerung des Systems behindert sind:
Zeile 62: Zeile 62:
Wie dieser Prozess in einem "Lehrbuch" der Mechanik / Mathematik und in einer Implementierung im Computer aussieht folgt hier in der linken bzw. rechten Spalte:
Wie dieser Prozess in einem "Lehrbuch" der Mechanik / Mathematik und in einer Implementierung im Computer aussieht folgt hier in der linken bzw. rechten Spalte:


<table>
<tr><td style="width:50%">
<h2>B: Die Lehrbuch-Sichtweise</h2>
</td><td style="width:50%">
<h2>C: Die Implementierung in MAXIMA</h2>
</td></tr>
</table>
----
----



Version vom 21. Februar 2021, 17:33 Uhr



Die Methode der Finiten Elemente ist deshalb so erfolgreich, weil Sie ideal mit der Implementierung im Computer harmoniert.

Auf zwei Ansätzen basiert dieser Erfolg:

Passt! Die komplette Struktur wird in kleine Elemente - die Finiten Elemente - aufgeteilt. Ihre Bewegung wird durch diskrete Knoten-Koordinaten erfasst, die wie  bei einem Puzzle zusammenpassen. Alles, was im Element-Inneren "passiert", wird durch die Knoten-Koordinaten erfasst.

Die Beschreibung der Struktur wird also komplett auf diese Koordinaten-Koordinaten reduziert.

Plus! Der Beitag jedes elastischen Elements wird additiv zum Gesamtsystem hinzugefügt. Diese Einzel-Beträge heißen Element-Steifigkeitsmatrix.

Schnittbilder und Schnittlasten brauchen wir nicht dafür!

Einführungsbeispiel

Wie das geht, zeige ich Ihnen - zuerst ohne Theorie - für ein Beispiel:

Stabwerk
Ein Stabwerk aus drei elastischen Stäben und einer Feder wird durch eine Einzelkraft F belastet. Alle Stäbe haben die Dehnsteifigkeit EA, die Federsteifigkeit ist k.

Gegeben sind a, EA, k, F, gesucht sind die Verschiebungen der Knotenpunkte.

Die Lösung mit der Methode der Finiten Elemente zeige ich Ihnen aus drei Perspektiven:

  1. das Prozess-Schema
  2. die Lehrbuch-Sichweise und
  3. die Implementierung in einem Algorithmus (hier Maxima).

Das Modell für ein lineares Modell mit Finiten Elemente ist ein System linearer Gleichungen. In jeder Spalte steht die Gleichgewichtsbedingung für eine Koordinate Qi, in den Spalten stehen die Koeffizienten der Koordinaten Qj. Das Gleichungssystem sieht immer so aus:

Wir benennen Stäbe und Knoten, ein Koordinatensystem brauchen wir auch:

Benennung von Stäben und Knoten.

Das Stabwerk besteht aus vier elastischen Bauteilen:

  • den Stäben 1,2 und 3 sowie
  • der Feder.

Und jedes dieser elastischen Bauteil hinterlässt eine Spur in der Steifigkeitsmatrix K.

Die Verformung der Stäbe erfassen wir durch die Verschiebung der Endpunkte - der Knoten - des Stabwerks. Wie das geht und wir wir daraus eine Element-Steifigkeitsmatrix für einen Dehnstab bekommen, steht in T312. Die Knoten-Verschiebungen schreiben wir in Q hinein, hier für drei Knoten die Verschiebungen jeweils u in x- und v in y-Richtung

A. Das Prozess-Schema

Das Gesamt-Gleichungssystem komponieren wir, indem die Element-Steifigkeitsmatrizen je Bauteil nach einem festen Schema in K hineinkopiert werden:

Prozessschema FEM


Es bleibt noch, die Randbedingungen in das System einzuarbeiten: das machen wir durch Streichen der Zeilen und Spalten des Gleichungssystems, die zu Koordinaten gehören, die aufgrund der Lagerung des Systems behindert sind:

Randbedingungen einarbeiten.


Wie dieser Prozess in einem "Lehrbuch" der Mechanik / Mathematik und in einer Implementierung im Computer aussieht folgt hier in der linken bzw. rechten Spalte:

B: Die Lehrbuch-Sichtweise

C: Die Implementierung in MAXIMA


Produktansatz der Trialfunctions.
Knoten und Elemente für Stabmodelle.
Plattenmodell
Stabwerk
Komposition der Steifigkeitsmatrix.
Verformung des Stabwerks.
Produktansatz mit linearen Trialfunctions.



Untergeornete Seiten