Gelöste Aufgaben/Bike: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 76: Zeile 76:


::<math>\delta \Pi_{Gi} = \int_0^{\ell_i} E \cdot I_i(x) \cdot  
::<math>\delta \Pi_{Gi} = \int_0^{\ell_i} E \cdot I_i(x) \cdot  
                     \left(  W_{i-1}  \varphi_1 \cdot \delta W_{i-1} \varphi_1 +
                     \left(  W_{i-1}  \varphi_1'' \cdot \delta W_{i-1} \varphi_1'' +
                           \Phi_{i-1} \varphi_2 \cdot \delta W_{i-1} \varphi_1 +
                           \Phi_{i-1} \varphi_2'' \cdot \delta W_{i-1} \varphi_1'' +
                             W_i      \varphi_3 \cdot \delta W_{i-1} \varphi_1 +
                             W_i      \varphi_3'' \cdot \delta W_{i-1} \varphi_1'' +
                           \ldots +
                           \ldots +
                           \Phi_{i}  \varphi_4 \cdot \delta \Phi_i  \varphi_4
                           \Phi_{i}  \varphi_4'' \cdot \delta \Phi_i  \varphi_4''
                     \right)</math>
                     \right)</math>


::<math>\left(.\right)' := \frac{d (.)}{dx}</math>


::<math>\delta \Pi_{Gi} = \delta Q_i^T \cdot \underline{\underline{K}}_i \cdot Q_i</math>
::<math>\delta \Pi_{Gi} = \delta Q_i^T \cdot \underline{\underline{K}}_i \cdot Q_i</math>


::<math> k_{i,jk} = \int_0^{\ell_i} E \cdot I_i(x) \varphi_j \cdot \varphi_k dx </math>
::<math> k_{i,jk} = \int_0^{\ell_i} E \cdot I_i(x) \varphi_j'' \cdot \varphi_k'' dx </math>


::<math>I_i(x) = \frac{\pi}{64}\left(D_i(x)^4-d_i(x)^4\right)</math>
::<math>I_i(x) = \frac{\pi}{64}\left(D_i(x)^4-d_i(x)^4\right)</math>
Zeile 98: Zeile 99:
::<math>\xi_2 = \frac{(x-H)}{\ell_2}</math>
::<math>\xi_2 = \frac{(x-H)}{\ell_2}</math>


::<math>\frac{d (.)}{dx} = \frac{d (.)}{d\xi_i} \cdot \frac{1}{\ell_i}</math>


::<math>\underline{\underline{K}} = \left(
::<math>\underline{\underline{K}} = \left(
Zeile 137: Zeile 139:
                         \underline{\dot{r}}_{B,2}
                         \underline{\dot{r}}_{B,2}
</math>
</math>
::<math>
\begin{array}{lll}
\underline{v}_{A,rel} & = &\underline{\dot{r}}_{A} \\
& = &\left(\begin{array}{c}
                      0\\
                    - v_0 + R_1 \cdot (\Omega + \dot{\Psi}_1(t))+ \dot{W}_2(t)
\end{array}\right)
\end{array}
</math>


::<math>\dot{\left(.\right)} := \frac{d (.)}{dt}</math>
::<math>\dot{\left(.\right)} := \frac{d (.)}{dt}</math>
Zeile 144: Zeile 157:


::<math>
::<math>
\delta r_{B,1}=\left(\begin{array}{c}
\delta\underline{r}_{B,1}=\left(\begin{array}{c}
               -\delta \Phi_1 b\\
               -\delta \Phi_1 b\\
               \delta W_1
               \delta W_1
Zeile 151: Zeile 164:


::<math>
::<math>
\delta r_{B2}=\left(\begin{array}{c}
\delta\underline{r}_{B2}=\left(\begin{array}{c}
           r_2 \cdot \delta \Psi_2 \sin(\psi)\\
           r_2 \cdot \delta \Psi_2 \sin(\psi)\\
           \delta W_2 - r_2 \cdot \delta \Psi_2 \cos(\psi)
           \delta W_2 - r_2 \cdot \delta \Psi_2 \cos(\psi)
Zeile 158: Zeile 171:


::<math>
::<math>
\delta r_A=\left(\begin{array}{c}
\delta\underline{r}_A=\left(\begin{array}{c}
           0\\
           0\\
           \delta W_2 + R_1 \cdot \delta \Psi_1
           \delta W_2 + R_1 \cdot \delta \Psi_1
Zeile 164: Zeile 177:
</math>
</math>


::<math>\delta W^a_{A} = \underline{F}_A^T \cdot \delta\underline{r}_A </math>


 
::<math>\delta W^a_{B} =   \underline{F}_{B}^T \cdot \delta\underline{r}_{B,1}
::<math>\delta W^a_{A} = </math>
\color{red}-\color{black} \underline{F}_{B}^T \cdot \delta\underline{r}_{B,2}
 
</math>
 





Version vom 10. März 2025, 07:19 Uhr


Aufgabenstellung

SOME TEXT


Caption

Gesucht ist "SOME EXPLANATION"


Lösung mit Maxima

Lorem Ipsum ....

Q~_=(W0Φ0W1Φ1W2Φ2,Ψ1,Ψ2)
δQ~_=(δW0δΦ0δW1δΦ1δW2δΦ2,δΨ1,δΨ2)


Y_=[Q_Q˙_]
Y˙_=f_(Y_)=[Q˙_M__1K__Q_+M__1P_]
M__Q¨_+K__Q_=P_(Q_,Q˙_)
δW=δWaδΠ=!0
δΠ=δΠG+δΠS
δΠS=KS(Ψ2Ψ1)(δΨ2δΨ1)
δΠG=δΠG1+δΠG2
δΠGi=0iMi(x)δwi(x)dx
Mi(x)=EI(x)wi(x)
wi(x)=Q_iTφ_
φ_=[(ξ1)2(2ξ+1)iξ(ξ1)2ξ2(2ξ3)iξ2(ξ1)]
Q~_i=(Wi1ΦiqWiΦi)
δΠGi=0iEIi(x)(Wi1φ1δWi1φ1+Φi1φ2δWi1φ1+Wiφ3δWi1φ1++Φiφ4δΦiφ4)
(.):=d(.)dx
δΠGi=δQiTK__iQi
ki,jk=0iEIi(x)φjφkdx
Ii(x)=π64(Di(x)4di(x)4)


Di(x)=Di1(ξ11)+Diξ1di(x)=di1(ξ11)+diξ1
ξ1=x1
ξ2=(xH)2
d(.)dx=d(.)dξi1i
K__=(k1,11k1,12k1,13k1,140000k1,12k1,22k1,23k1,240000k1,13k1,23k1,33+k2,11k1,34+k2,12k2,13k2,1400k1,14k1,24k1,34+k2,12k1,44+k2,22k2,23k2,240000k2,13k2,23k2,33k2,340000k2,14k2,24k2,34k2,4400000000KSKS000000KSKS)


r_B,1=(Hhbsin(Φ1(t))v0t+W1(t)+bcos(Φ1(t)))
r_B,2=(Hr2cos(Ωt+Ψ2(t)+Θ2)v0t+W2(t)r2sin(Ωt+Ψ2(t)+Θ2))
r_A=(HR1cos(Ωt+Ψ1(t)+Θ1)v0t+W1(t)R1sin(Ωt+Ψ1(t)+Θ1))


v_B,rel=r˙_B,1r˙_B,2
v_A,rel=r˙_A=(0v0+R1(Ω+Ψ˙1(t))+W˙2(t))


(.)˙:=d(.)dt


δWa=δWAa+δWBa+δWdAlemberta
δr_B,1=(δΦ1bδW1)
δr_B2=(r2δΨ2sin(ψ)δW2r2δΨ2cos(ψ))
δr_A=(0δW2+R1δΨ1)
δWAa=F_ATδr_A
δWBa=F_BTδr_B,1F_BTδr_B,2



tmp

Title

Text


1+1






Links

  • ...

Literature

  • ...