Gelöste Aufgaben/Bike: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 110: Zeile 110:
0&0&0&0&0&0&\color{magenta}-K_S&\color{magenta}K_S\\
0&0&0&0&0&0&\color{magenta}-K_S&\color{magenta}K_S\\
\end{array} \right)</math>
\end{array} \right)</math>
::<math>
\underline{r}_{B,1}=\left(\begin{array}{c}
              H - h          - b \cdot \sin(\Phi_1(t))\\
              -v_0 t  + W_1(t) + b \cdot \cos(\Phi_1(t)) \end{array}\right)
</math>
::<math>
\underline{r}_{B,2}=\left(\begin{array}{c}
              H            - r_2 \cdot \cos(\Omega t+\Psi_2(t)+\Theta_2)\\
              -v_0 t + W_2(t)- r_2 \cdot \sin(\Omega t+\Psi_2(t)+\Theta_2)
                          \end{array}\right)
</math>
::<math>
\underline{r}_{A}=\left(\begin{array}{c}
              H              - R_1 \cdot \cos(\Omega t+\Psi_1(t)+\Theta_1)\\
              -v_0 t + W_1(t) - R_1 \cdot \sin(\Omega t+\Psi_1(t)+\Theta_1)                          \end{array}\right)
</math>
::<math>
\underline{v}_{B,rel}=
                        \underline{\dot{r}}_{B,1} -
                        \underline{\dot{r}}_{B,2}
</math>
::<math>\dot{\left(.\right)} := \frac{d (.)}{dt}</math>
::<math>\delta W^a = \delta W^a_{A} + \delta W^a_{B} + \delta W^a_{d'Alembert}</math>
::<math>
\delta r_{B,1}=\left(\begin{array}{c}
              -\delta \Phi_1 b\\
              \delta W_1
\end{array}\right)
</math>
::<math>
\delta r_{B2}=\left(\begin{array}{c}
          r_2 \cdot \delta \Psi_2 \sin(\psi)\\
          \delta W_2 - r_2 \cdot \delta \Psi_2 \cos(\psi)
\end{array}\right)
</math>
::<math>
\delta r_A=\left(\begin{array}{c}
          0\\
          \delta W_2 + R_1 \cdot \delta \Psi_1
\end{array}\right)
</math>
::<math>\delta W^a_{A} = </math>


==tmp==
==tmp==

Version vom 10. März 2025, 06:47 Uhr


Aufgabenstellung

SOME TEXT


Caption

Gesucht ist "SOME EXPLANATION"


Lösung mit Maxima

Lorem Ipsum ....

Q~_=(W0Φ0W1Φ1W2Φ2,Ψ1,Ψ2)
δQ~_=(δW0δΦ0δW1δΦ1δW2δΦ2,δΨ1,δΨ2)


Y_=[Q_Q˙_]
Y˙_=f_(Y_)=[Q˙_M__1K__Q_+M__1P_]
M__Q¨_+K__Q_=P_(Q_,Q˙_)
δW=δWaδΠ=!0
δΠ=δΠG+δΠS
δΠS=KS(Ψ2Ψ1)(δΨ2δΨ1)
δΠG=δΠG1+δΠG2
δΠGi=0iMi(x)δwi(x)dx
Mi(x)=EI(x)wi(x)
wi(x)=Q_iTφ_
φ_=[(ξ1)2(2ξ+1)iξ(ξ1)2ξ2(2ξ3)iξ2(ξ1)]
Q~_i=(Wi1ΦiqWiΦi)
δΠGi=0iEIi(x)(Wi1φ1δWi1φ1+Φi1φ2δWi1φ1+Wiφ3δWi1φ1++Φiφ4δΦiφ4)


δΠGi=δQiTK__iQi
ki,jk=0iEIi(x)φjφkdx
Ii(x)=π64(Di(x)4di(x)4)


Di(x)=Di1(ξ11)+Diξ1di(x)=di1(ξ11)+diξ1
ξ1=x1
ξ2=(xH)2


K__=(k1,11k1,12k1,13k1,140000k1,12k1,22k1,23k1,240000k1,13k1,23k1,33+k2,11k1,34+k2,12k2,13k2,1400k1,14k1,24k1,34+k2,12k1,44+k2,22k2,23k2,240000k2,13k2,23k2,33k2,340000k2,14k2,24k2,34k2,4400000000KSKS000000KSKS)


r_B,1=(Hhbsin(Φ1(t))v0t+W1(t)+bcos(Φ1(t)))
r_B,2=(Hr2cos(Ωt+Ψ2(t)+Θ2)v0t+W2(t)r2sin(Ωt+Ψ2(t)+Θ2))
r_A=(HR1cos(Ωt+Ψ1(t)+Θ1)v0t+W1(t)R1sin(Ωt+Ψ1(t)+Θ1))


v_B,rel=r˙_B,1r˙_B,2
(.)˙:=d(.)dt


δWa=δWAa+δWBa+δWdAlemberta
δrB,1=(δΦ1bδW1)
δrB2=(r2δΨ2sin(ψ)δW2r2δΨ2cos(ψ))
δrA=(0δW2+R1δΨ1)


δWAa=




tmp

Title

Text






Links

  • ...

Literature

  • ...