Gelöste Aufgaben/Bike: Unterschied zwischen den Versionen
Zur Navigation springen
Zur Suche springen
Keine Bearbeitungszusammenfassung |
|||
Zeile 28: | Zeile 28: | ||
::<math>\underline{\tilde{Q}} = \left[\begin{array}{c}W_0\\\Phi_0\\W_1\\\Phi_1\\W_2\\\Phi_2,\\\Psi_1,\\\Psi_2 \end{array}\right]</math> | ::<math>\underline{\tilde{Q}} = \left[\begin{array}{c}W_0\\\Phi_0\\W_1\\\Phi_1\\W_2\\\Phi_2,\\\Psi_1,\\\Psi_2 \end{array}\right]</math> | ||
::<math>\underline{\delta \tilde{Q}} = \left[\begin{array}{c}\delta W_0\\\delta \Phi_0\\\delta W_1\\\delta \Phi_1\\\delta W_2\\\delta \Phi_2,\\\delta \Psi_1,\\\delta \Psi_2 \end{array}\right]</math> | |||
::<math>\underline{Y} =\left[\begin{array}{c}\underline{Q}\\\underline{\dot{Q}} \end{array}\right]</math> | ::<math>\underline{Y} =\left[\begin{array}{c}\underline{Q}\\\underline{\dot{Q}} \end{array}\right]</math> | ||
Zeile 58: | Zeile 61: | ||
::<math>M_i(x) = E\cdot I(x) \cdot w_i''(x)</math> | ::<math>M_i(x) = E\cdot I(x) \cdot w_i''(x)</math> | ||
::<math>w_i(x) = \underline{Q}^T\cdot \underline{\ | ::<math>w_i(x) = \underline{Q}^T_i\cdot \underline{\varphi}</math> | ||
::<math>\underline{\varphi} = | |||
\left[\begin{array}{c} | |||
(\xi-1)^2 \cdot(2\cdot\xi+1)\\ | |||
\ell_i\cdot \xi \cdot (\xi-1)^2\\ | |||
- \xi^2 \cdot(2\xi-3)\\ | |||
\ell_i\cdot \xi^2 \cdot( \xi-1) | |||
\end{array}\right] | |||
</math> | |||
::<math>\delta \Pi_{Gi} = \int_0^{\ell_i} E \cdot I_i(x) \cdot | |||
\left( W_{i-1} \varphi_1 \cdot \delta W_{i-1} \varphi_1 + | |||
\Phi_{i-1} \varphi_2 \cdot \delta W_{i-1} \varphi_1 + | |||
W_i \varphi_3 \cdot \delta W_{i-1} \varphi_1 + | |||
\ldots + | |||
\Phi_{i} \varphi_4 \cdot \delta \Phi_i \varphi_4 | |||
\right)</math> | |||
::<math>\delta \Pi_{Gi} = \delta Q_i^T \cdot \underline{\underline{K}}_i \cdot Q_i</math> | |||
::<math> k_{j,k}^i = \int_0^{\ell_i} E \cdot I_i(x) \varphi_j \cdot \varphi_k dx </math> | |||
::<math>I_i(x) = \frac{\pi}{64}\left(D_i(x)^4-d_i(x)^4\right)</math> | |||
::<math>\begin{array}{ccccc}D_i(x) &=& D_{i-1}\cdot\left(\xi_1-1\right) &+& D_i\cdot \xi_1\\ | |||
d_i(x) &=& d_{i-1}\cdot\left(\xi_1-1\right) &+& d_i\cdot \xi_1 | |||
\end{array}</math> | |||
::<math>\xi_1 = \frac{ x }{\ell_1}</math> | |||
::<math>\xi_2 = \frac{(x-H)}{\ell_2}</math> | |||
==tmp== | ==tmp== |