Gelöste Aufgaben/StaF: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 279: | Zeile 279: | ||
\end{array} | \end{array} | ||
</math> | </math> | ||
Mit diesen Ergebnissen können wir nun das Stabwerk in seiner verformten Konfiguration zeichnen. | |||
[[Datei:StaF-21.png|350px|right|mini|Stabwerk in verformter Konfiguration.]] | |||
Für die Darstellung müssen wir die Koodinaten der Verschiebung wieder in die lokalen Koordinatensysteme zurücktransformieren - und das geht wieder über die Euler-Drehmatrizen (s.o.). | |||
Da die Koordinaten der Verschiebung im globalen Koordinatensystem die gleichen sind wie in [[Gelöste_Aufgaben/StaB|StaB]], sind auch die Verläufe der Schnittlasten in den Stäben identisch - wir brauchen also die Ergebnisse nicht noch einmal aufzutragen. | |||
<!--------------------------------------------------------------------------------> | <!--------------------------------------------------------------------------------> |
Version vom 25. November 2024, 12:05 Uhr
Aufgabenstellung
Wir untersuchen die Belastung eines ebenen Stabwerks. Die Stäbe haben wie skizziert die Länge ℓ bzw. ℓ/2. Die Struktur wird mit der Kraft F belastet.
Gesucht ist ein Vergleich zwischen der klassischen Stabwerkstheorie und einer Herangehensweise, bei der wir eine feste Verbindung der Stäbe in den Knoten ansetzten. Grundlage des Modells ist die FEM-Lösung der Felddifferentialgleichung im Vergleich zur Lösung in Problemstellung „Stab“.
Wir stellen das Modell des Stabwerks mit dem Prinzip der virtuellen Verrückungen auf und vergleichen, wie sich diese von der Herangehensweise aus „Stab“ mit der analytischen Lösung unterscheidet.
Lösung mit Maxima
Wir nutzen das Computer-Algebra-System Maxima zur Lösung. Das macht hier Sinn, weil wir die Herangehensweise mit der aus Stab vergleichen wollen – für die wir ebenfalls Maxima eingesetzt haben.
Declarations
Wir übernehmen alle Vereinbarungen und Parameter aus der Problemformulierung „Stab“.
Gleichgewichtsbedingungen
Für die Gleichgewichtsbedingung nach dem Prinzip der virtuellen Verrückungen
benötigen wir die virtuelle Formänderungsenergie und die virtuelle Arbeit der äußeren Kraft der äußeren Kräfte und Momente.
Mit den Konventionen für die Knoten-Verschiebungen aus Stab ist
- .
Für gilt
mit den virtuellen Formänderungsarbeiten der vier Stäbe.
Dabei haben wir Anteile der Arbeit aus der [Biegung] und der Längs-Dehnung des Stabes.
Für den Stab k mit den Knoten I und J haben wir als Koodinaten der Knoten
- und .
Damit haben wir
Für den Stab k definieren wir
- sowie
und finden damit
mit der Element-Steifigkeitsmatrix des Elements k im k-Koordinatensystem
Transformation der Koordinaten in das globale System
In den Ausdrücken der virtuellen Formänderungsenergie stehen die Koordinaten des lokalen Koordinatensystems von k. Die müssen wir, wie in Stab mit der Euler-Drehmatrix ineinander überführen.
Dafür haben wir
mit der Transformationsmatrix
Es ist praktisch, an dieser Stelle die Abkürzung
für die Koordinaten eines Knoten im Referenzsystem einzuführen. Also ist
Damit wir für die Elementsteifigkeitsmatrix - mit beiden Anfangs- und Endknoten des Elements - vom "0"-System ins "k"-System transformieren, brauchen wir die neue Transformations-Matrix
Mit diesen ist
Die resultierenden Element-Steifigkeitsmatrizen sind im folgenden aufgeschreiben:
Element-Steigigkeitsmatrizen mit globalen Koordinaten |
---|
Element #1 |
|
Element #2 |
|
Element #3 |
|
Element #4 |
|
Wir sammeln nun alle Koordianten der Knoten im 0-System in
und schreiben die Gleichgewichtsbedingungen in der Form
an. Dabei kommen die Beiträge zur Gesamt-Steifigkeitsmatrix (hier noch in der Fassung ohne Berücksichtigung der Randbedingungen) aus den vier Beiträgen der virtuellen Formänderungsenergie - die wir hier farblich gekennzeichnet haben:
Einarbeitung der Randbedingungen
Die Randbedingungen arbeiten wir hier durch das Streichen der passenden Zeilen für sowie der passenden Spalten für ein.
Das resultierende Gleichungssystem ist dies:
Solving
Das Ergebnis ist - für die gleichen Parameter wie in Stab -
Mit diesen Ergebnissen können wir nun das Stabwerk in seiner verformten Konfiguration zeichnen.

Für die Darstellung müssen wir die Koodinaten der Verschiebung wieder in die lokalen Koordinatensysteme zurücktransformieren - und das geht wieder über die Euler-Drehmatrizen (s.o.).
Da die Koordinaten der Verschiebung im globalen Koordinatensystem die gleichen sind wie in StaB, sind auch die Verläufe der Schnittlasten in den Stäben identisch - wir brauchen also die Ergebnisse nicht noch einmal aufzutragen.
Title
Text
1+1
Links
- ...
Literature
- ...