Gelöste Aufgaben/StaF: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 88: | Zeile 88: | ||
\delta W_{J,k}\\ | \delta W_{J,k}\\ | ||
\delta \Phi_{J,k}\\ | \delta \Phi_{J,k}\\ | ||
\end{array}\right)</math> | \end{array}\right) | ||
</math> | |||
und finden damit | |||
::<math> | |||
\delta \Pi_k = \delta \underline{Q}^T \cdot \underline{\underline{K}}_k \cdot \underline{Q} | |||
</math> | |||
mit der Element-Steifigkeitsmatrix | |||
::<math> | |||
\underline{\underline{K}}_k = | |||
\frac{EI}{\ell_i^3} | |||
\cdot | |||
\begin{pmatrix}0 & 0 & 0 & 0 & 0 & 0\\ | |||
0 & 12 & 6\, {\ell_i} & 0 &-12 & 6\, {\ell_i}\\ | |||
0 & 6\, {\ell_i} & 4\, {\ell_i^{2}} & 0 & -6\, {\ell_i} & 2\, {\ell_i^{2}}\\ | |||
0 & 0 & 0 & 0 & 0 & 0\\ | |||
0 &-12 & -6\, {\ell_i} & 0 & 12 & -6\, {\ell_i}\\ | |||
0 & 6\, {\ell_i} & 2\, {\ell_i^{2}} & -0 & 6\, {\ell_i} & 4\,{\ell_i^{2}} | |||
\end{pmatrix} | |||
+ | |||
\frac{EA}{\ell_i} | |||
\cdot | |||
\begin{pmatrix}1 & 0 & 0 &-1 & 0 & 0\\ | |||
0 & 0 & 0 & 0 & 0 & 0\\ | |||
0 & 0 & 0 & 0 & 0 & 0\\ | |||
-1 & 0 & 0 & 1 & 0 & 0\\ | |||
0 & 0 & 0 & 0 & 0 & 0\\ | |||
0 & 0 & 0 & 0 & 0 & 0 | |||
\end{pmatrix} | |||
</math> | |||
Zeile 104: | Zeile 134: | ||
::<math> | ::<math> | ||
\begin{pmatrix}\frac{2 {{A}^{2}} E \eta }{3 {\ell_0}} & 0 & -\left( \frac{2 {{A}^{2}} E \eta }{{{\ell}_{0}^{2}}}\right) | \begin{pmatrix} | ||
0 & \frac{2 {{A}^{2}} E \eta }{3 {\ell_0}} & -\left( \frac{{{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\right) & -\left( \frac{ | \frac{2 {{A}^{2}} E \eta }{3 {\ell_0}} & 0 & 0 & -\left( \frac{2 {{A}^{2}} E \eta }{{{\ell}_{0}^{2}}}\right) & \frac{{{A}^{2}} E \eta }{3 {\ell_0}} & 0 & 0 & 0\\ | ||
-\left( \frac{ | 0 & \frac{2 {{A}^{2}} E \eta }{3 {\ell_0}} & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\right) & -\left( \frac{{{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\right) & \frac{{{A}^{2}} E \eta }{6 {\ell_0}} & 0 & -\left( \frac{{{A}^{2}} E \eta }{2 {{\ell}_{0}^{2}}}\right) & \frac{{{A}^{2}} E \eta }{6 {\ell_0}}\\ | ||
0 & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\right) & \frac{3 {{A}^{2}} E \eta +{{\ell}_{0}^{2}} A E}{2 {{\ell}_{0}^{3}}}+\frac{2 A E}{{\ell_0}} & 0 & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta }{2 {{\ell}_{0}^{2}}}\right) & -\left( \frac{3 {{A}^{2}} E \eta +{{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}}\right) & \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}} & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\right) \\ | |||
\frac{{{A}^{2}} E \eta }{ | -\left( \frac{2 {{A}^{2}} E \eta }{{{\ell}_{0}^{2}}}\right) & -\left( \frac{{{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\right) & 0 & \frac{{{A}^{2}} E \eta +3 {{\ell}_{0}^{2}} A E}{2 {{\ell}_{0}^{3}}}+\frac{8 {{A}^{2}} E \eta }{{{\ell}_{0}^{3}}} & -\left( \frac{2 {{A}^{2}} E \eta }{{{\ell}_{0}^{2}}}\right) & \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}} & -\left( \frac{{{A}^{2}} E \eta +3 {{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}}\right) & \frac{{{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\\ | ||
\frac{{{A}^{2}} E \eta }{3 {\ell_0}} & \frac{{{A}^{2}} E \eta }{6 {\ell_0}} & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta }{2 {{\ell}_{0}^{2}}}\right) & -\left( \frac{2 {{A}^{2}} E \eta }{{{\ell}_{0}^{2}}}\right) & \frac{4 {{A}^{2}} E \eta }{3 {\ell_0}} & \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}} & -\left( \frac{{{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\right) & \frac{{{A}^{2}} E \eta }{6 {\ell_0}}\\ | |||
0 & | 0 & 0 & -\left( \frac{3 {{A}^{2}} E \eta +{{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}}\right) & \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}} & \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}} & \frac{3 {{A}^{2}} E \eta +{{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}}+\frac{A E}{{\ell_0}} & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}}\right) & \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\\ | ||
0 & -\left( \frac{{{A}^{2}} E \eta }{2 {{\ell}_{0}^{2}}}\right) & \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}} & -\left( \frac{{{A}^{2}} E \eta +3 {{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}}\right) & -\left( \frac{{{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\right) & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}}\right) & \frac{{{A}^{2}} E \eta +3 {{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}}+\frac{{{A}^{2}} E \eta }{{{\ell}_{0}^{3}}} & -\left( \frac{3 {{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\right) \\ | |||
0 & \frac{{{A}^{2}} E \eta }{6 {\ell_0}} & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\right) & \frac{{{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}} & \frac{{{A}^{2}} E \eta }{6 {\ell_0}} & \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}} & -\left( \frac{3 {{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\right) & \frac{2 {{A}^{2}} E \eta }{3 {\ell_0}} | |||
\end{pmatrix} | |||
\cdot | |||
\begin{pmatrix} | \begin{pmatrix} | ||
{W_{1,0}}\\ | {W_{1,0}}\\ |
Version vom 22. Oktober 2024, 08:56 Uhr
Aufgabenstellung
Wir untersuchen die Belastung eines ebenen Stabwerks. Die Stäbe haben wie skizziert die Länge ℓ bzw. ℓ/2. Die Struktur wird mit der Kraft F belastet.

Gesucht ist ein Vergleich zwischen der klassischen Stabwerkstheorie und einer Herangehensweise, bei der wir eine feste Verbindung der Stäbe in den Knoten ansetzten. Grundlage des Modells ist die FEM-Lösung der Felddifferentialgleichung im Vergleich zur Lösung in Problemstellung „Stab“.
Wir stellen das Modell des Stabwerks mit dem Prinzip der virtuellen Verrückungen auf und vergleichen, wie sich diese von der Herangehensweise aus „Stab“ mit der analytischen Lösung unterscheidet.
Lösung mit Maxima
Wir nutzen das Computer-Algebra-System Maxima zur Lösung. Das macht hier Sinn, weil wir die Herangehensweise mit der aus Stab vergleichen wollen – für die wir ebenfalls Maxima eingesetzt haben.
Declarations
Wir übernehmen alle Vereinbarungen und Parameter aus der Problemformulierung „Stab“.
Gleichgewichtsbedingungen
Für die Gleichgewichtsbedingung nach dem Prinzip der virtuellen Verrückungen
benötigen wir die virtuelle Formänderungsenergie und die virtuelle Arbeit der äußeren Kraft der äußeren Kräfte und Momente.
Mit den Konventionen für die Knoten-Verschiebungen aus [Stab] ist
- .
Für gilt
mit den virtuellen Formänderungsarbeiten der vier Stäbe.
Dabei haben wir Anteile der Arbeit aus der [Biegung] und der Längs-Dehnung des Stabes.
Für den Stab k mit den Knoten I und J haben wir als Koodinaten der Knoten
- und .
Damit haben wir
Für den Stab k definieren wir
- sowie
und finden damit
mit der Element-Steifigkeitsmatrix
Hier kommt jetzt irgendein Text.
Title
Text
1+1
Element-Steigigkeitsmatrizen mit globalen Koordinaten |
---|
Element #1 |
|
Element #2 |
|
Element #3 |
|
Element #4 |
|
Links
- ...
Literature
- ...