Gelöste Aufgaben/StaF: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
 
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
[[Category:Gelöste Aufgaben]]
[[Category:Gelöste Aufgaben]]
[[Category:Dimensionslose Schreibweise]]
[[Category:A*x=b]]
[[Category:A*x=b]]
[[Category:Lineare Algebra]]
[[Category:Lineare Algebra]]
[[Category:Achsensymmetrie]]
[[Category:Rotationssymmetrie‎]]
[[Category:Analytische Lösung]]
[[Category:Numerische Lösung]]
[[Category:Numerische Lösung]]
[[Category:Anfangswertproblem]]
[[Category:Randwertproblem]]
[[Category:Randwertproblem]]
[[Category:Ansys]][[Category:Shell-Element]]
[[Category:Arbeitsfunktion]]
[[Category:Potential]]
[[Category:Prinzip der virtuellen Arbeit‎]]
[[Category:Prinzip der virtuellen Arbeit‎]]
[[Category:Prinzip der virtuellen Verrückungen]]
[[Category:Prinzip der virtuellen Verrückungen]]
Zeile 68: Zeile 60:
== Lösung mit Maxima ==
== Lösung mit Maxima ==
Lorem Ipsum ....
Lorem Ipsum ....
::<math>
\begin{pmatrix}\frac{2 {{A}^{2}} E \eta }{3 {\ell_0}} & 0 & -\left( \frac{2 {{A}^{2}} E \eta }{{{\ell}_{0}^{2}}}\right)  & 0 & \frac{{{A}^{2}} E \eta }{3 {\ell_0}} & 0 & 0 & 0\\
0 & \frac{2 {{A}^{2}} E \eta }{3 {\ell_0}} & -\left( \frac{{{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\right)  & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\right)  & \frac{{{A}^{2}} E \eta }{6 {\ell_0}} & -\left( \frac{{{A}^{2}} E \eta }{2 {{\ell}_{0}^{2}}}\right)  & 0 & \frac{{{A}^{2}} E \eta }{6 {\ell_0}}\\
-\left( \frac{2 {{A}^{2}} E \eta }{{{\ell}_{0}^{2}}}\right)  & -\left( \frac{{{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\right)  & \frac{{{A}^{2}} E \eta +3 {{\ell}_{0}^{2}} A E}{2 {{\ell}_{0}^{3}}}+\frac{8 {{A}^{2}} E \eta }{{{\ell}_{0}^{3}}} & 0 & -\left( \frac{2 {{A}^{2}} E \eta }{{{\ell}_{0}^{2}}}\right)  & -\left( \frac{{{A}^{2}} E \eta +3 {{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}}\right)  & \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}} & \frac{{{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\\
0 & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\right)  & 0 & \frac{3 {{A}^{2}} E \eta +{{\ell}_{0}^{2}} A E}{2 {{\ell}_{0}^{3}}}+\frac{2 A E}{{\ell_0}} & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta }{2 {{\ell}_{0}^{2}}}\right)  & \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}} & -\left( \frac{3 {{A}^{2}} E \eta +{{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}}\right)  & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\right) \\
\frac{{{A}^{2}} E \eta }{3 {\ell_0}} & \frac{{{A}^{2}} E \eta }{6 {\ell_0}} & -\left( \frac{2 {{A}^{2}} E \eta }{{{\ell}_{0}^{2}}}\right)  & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta }{2 {{\ell}_{0}^{2}}}\right)  & \frac{4 {{A}^{2}} E \eta }{3 {\ell_0}} & -\left( \frac{{{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\right)  & \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}} & \frac{{{A}^{2}} E \eta }{6 {\ell_0}}\\
0 & -\left( \frac{{{A}^{2}} E \eta }{2 {{\ell}_{0}^{2}}}\right)  & -\left( \frac{{{A}^{2}} E \eta +3 {{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}}\right)  & \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}} & -\left( \frac{{{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\right)  & \frac{{{A}^{2}} E \eta +3 {{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}}+\frac{{{A}^{2}} E \eta }{{{\ell}_{0}^{3}}} & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}}\right)  & -\left( \frac{3 {{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\right) \\
0 & 0 & \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}} & -\left( \frac{3 {{A}^{2}} E \eta +{{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}}\right)  & \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}} & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta -\sqrt{3} {{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}}\right)  & \frac{3 {{A}^{2}} E \eta +{{\ell}_{0}^{2}} A E}{4 {{\ell}_{0}^{3}}}+\frac{A E}{{\ell_0}} & \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\\
0 & \frac{{{A}^{2}} E \eta }{6 {\ell_0}} & \frac{{{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}} & -\left( \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\right)  & \frac{{{A}^{2}} E \eta }{6 {\ell_0}} & -\left( \frac{3 {{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}}\right)  & \frac{\sqrt{3} {{A}^{2}} E \eta }{4 {{\ell}_{0}^{2}}} & \frac{2 {{A}^{2}} E \eta }{3 {\ell_0}}\end{pmatrix}
\cdot
\begin{pmatrix}
{W_{1,0}}\\
{U_{1,0}}\\
{{\Phi }_{1,0}}\\
{W_{2,0}}\\
{U_{2,0}}\\
{{\Phi }_{2,0}}\\
{W_{3,0}}\\
{U_{3,0}}\\
{{\Phi }_{3,0}}\\
{W_{4,0}}\\
{U_{4,0}}\\
{{\Phi }_{4,0}}
\end{pmatrix}
=
\begin{pmatrix}
0\\
0\\
0\\
0\\
0\\
F\\
0\\
0
\end{pmatrix}
</math>
<math>
</math


==tmp==
==tmp==

Version vom 21. Oktober 2024, 13:03 Uhr


Aufgabenstellung

SOME TEXT


Caption

Gesucht ist "SOME EXPLANATION"


Lösung mit Maxima

Lorem Ipsum ....

<math> </math

tmp

Title

Text


1+1






Links

  • ...

Literature

  • ...