Gelöste Aufgaben/T3BP: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 80: | Zeile 80: | ||
% compose vectors, unit vectors and distances | % compose vectors, unit vectors and distances | ||
r(1,2,:) = u(2,:)-u(1,:); % this from m[1] to m[2] | r(1,2,:) = u(2,:)-u(1,:); % this from m[1] to m[2] | ||
: | |||
: | |||
: | |||
% mass 3 | % mass 3 | ||
dydt(9+7:9+9,1)=sys.theta(1)/R(3,1)*e(3,1,:)+sys.theta(2)/R(3,2)*e(3,2,:); | dydt(9+7:9+9,1)=sys.theta(1)/R(3,1)*e(3,1,:)+sys.theta(2)/R(3,2)*e(3,2,:); |
Version vom 2. Oktober 2022, 20:02 Uhr
Aufgabenstellung
Sie untersuchen das „Three-Body-Problem“(vgl. Wikipedia) numerisch. Dabei sollen die Bahnen von drei Körper mit den Punktmassen m1, m2, m3 in Wechselwirkung miteinander berechnet werden.

Gesucht ist die Lösung des Anfangswertproblems für verschiedene Anfangswerte (Orte und Geschwindigkeiten) und Massen mi der Körper.
Lösung mit Matlab®
Lorem Ipsum ....
tmp
Header
Text
Declarations
Text
Equilibrium Conditions
Die Bewegungsgleichungen schreiben wir in Vektorschreibweise für Körper i als
- .
Dabei ist z.B. i=1 und =2,3.
Die drei Bewegungsgleichungen in den drei räumlichen Koordinaten ui formulieren wir in dimensionslosen Koordinaten. Dafür brauchen wir drei unabhängige Referenzgrößen, hier wählen wir
Und fehlt noch die Referent-Zeit T, die wir aus
erhalten.
Damit können wir schreiben:
Einsetzen und Kürzen liefert uns dann die dimensionslosen Bewegungsgleichungen
- .
Solving
Text
Post-Processing
Text


Links
- ...
Literature
- ...