Sources/Lexikon/Kugelkoordinaten: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
=Definition=
In Kugelkoordinaten oder räumlichen Polarkoordinaten wird ein Punkt ''P'' im dreidimensionalen Raum durch seinen Abstand vom Ursprung und zwei Winkel angegeben.  
In Kugelkoordinaten oder räumlichen Polarkoordinaten wird ein Punkt ''P'' im dreidimensionalen Raum durch seinen Abstand vom Ursprung und zwei Winkel angegeben.  
[[Datei:Kugelkoordinaten-01.png|210px|left|mini|Kugelkoordinaten r, ''φ<sub>1</sub>, φ<sub>2</sub>'' eines Punktes ''P'' und kartesisches Koordinatensystem mit den Achsen ''x<sub>1</sub>, x<sub>2</sub>,x<sub>3</sub>''.]]
[[Datei:Kugelkoordinaten-01.png|210px|left|mini|Kugelkoordinaten r, ''φ<sub>1</sub>, φ<sub>2</sub>'' eines Punktes ''P'' und kartesisches Koordinatensystem mit den Achsen ''x<sub>1</sub>, x<sub>2</sub>,x<sub>3</sub>''.]]
Zeile 27: Zeile 26:


<!-------------------------------------------------------------------------------->
<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Title
{{MyCodeBlock|title=Umrechnen von Euler-Winkel in Kugel-Koordinaten
|text=Oft kann man räumliche Polarkoordinaten besser interpretieren als Euler-Winkel. Wir schreiben deshalb hier eine Transformationsvorschrift an, mit der Euler-Winkel in Polarkoordinaten übersetzten kann.
|text=Oft kann man räumliche Polarkoordinaten besser interpretieren als Euler-Winkel. Wir schreiben deshalb hier eine Transformationsvorschrift an, mit der Euler-Winkel in Polarkoordinaten übersetzten kann.



Version vom 4. April 2022, 13:07 Uhr

In Kugelkoordinaten oder räumlichen Polarkoordinaten wird ein Punkt P im dreidimensionalen Raum durch seinen Abstand vom Ursprung und zwei Winkel angegeben.

Kugelkoordinaten r, φ1, φ2 eines Punktes P und kartesisches Koordinatensystem mit den Achsen x1, x2,x3.

So ist der Vektor vom Ursprung zum Punkt P

mit

.

Die Kugelkoordinaten kann man - ähnlich wie bei den Euler-Winkeln -zur Definition eines neuen, lokalen Koordinatensystems nutzen. Neben dem Flächen-Normalenvektor spannen dabei die Tangentialvektoren zu φ1 und φ2 eine neue Basis auf.

Einheitsvektoren der Orthogonalbasis , die in Punkt P der Kugel mit die Flächennormale definieren und mit die Tangentialebene aufspannen.

Die Koordinatentransformation erfolgt über

mit der Transformationsmatrix

Umrechnen von Euler-Winkel in Kugel-Koordinaten

Oft kann man räumliche Polarkoordinaten besser interpretieren als Euler-Winkel. Wir schreiben deshalb hier eine Transformationsvorschrift an, mit der Euler-Winkel in Polarkoordinaten übersetzten kann.

Dabei geben wir von einem Punkt P in Euler-Koordinaten mit


/* Euler-Winkel */
D[1](φ) := matrix([1,0,0],[0,cos(φ),sin(φ)],[0,-sin(φ),cos(φ)]);
D[2](φ) := matrix([cos(φ),0,-sin(φ)],[0,1,0],[sin(φ),0,cos(φ)]);
D[3](φ) := matrix([cos(φ),sin(φ),0],[-sin(φ),cos(φ),0],[0,0,1]);

/* Kugelkoordinanten */
D[12](θ,φ):= matrix([ cos(θ)*cos(φ), cos(θ)*sin(φ), -sin(θ)],
                    [       -sin(φ),        cos(φ),     0  ],
                    [ sin(θ)*cos(φ), sin(θ)*sin(φ),  cos(θ)]);



/* Zusammenhang Euler-Winkel - Kugelkoordinaten*/
/* Euler -> Kugel */

equ: matrix([a[x],a[y],a[z]]).D[3](θ[3]).D[12](θ[1],θ[2]) - matrix([a[x],a[y],a[z]]).D[3](φ[3]).D[1](φ[1]).D[2](φ[2]);
equ: flatten(makelist(coeff(args(equ),[a[x],a[y],a[z]][i]),i,1,3));
equ: makelist(equ[i]=0,i,1,9);
repl: solve([equ[5],equ[6],equ[7],equ[8],equ[9]],[cos(θ[3]),sin(θ[2]),cos(θ[2]),sin(θ[1]),cos(θ[1])])[1];
equ: transpose(subst(repl,equ));
repl: append(trigsimp(repl), subst([sin(φ[1])^2=1-cos(φ[1])^2],trigsimp(solve(equ[1],sin(θ[3])^2))));
equ: trigsimp(transpose(subst(repl,equ)));




Links

  1. Kugelkoordinaten auf Wikipedia
  2. Sources/Lexikon/Eulersche Winkel
  3. Quaternionen für Drehungen
  4. Geographische Koordinaten

Literature

  • ...