Sources/Lexikon/Kugelkoordinaten: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 26: | Zeile 26: | ||
</math> | </math> | ||
=Transformation von Euler-Winkeln= | |||
Oft kann man räumliche Polarkoordinaten besser interpretieren als Euler-Winkel. Wir schreiben deshalb hier eine Transformationsvorschrift an, mit der Euler-Winkel in Polarkoordinaten übersetzten kann. | |||
Dabei geben wir von einem Punkt ''P'' in Euler-Koordinaten mit | |||
::<math></math> | |||
\begin{array}{l}\cos{\left( {{\theta }_3}\right) }=\frac{\sin{\left( {{\varphi }_2}\right) } \cos{\left( {{\varphi }_3}\right) } \sin{\left( {{\varphi }_3}\right) }+\sin{\left( {{\varphi }_1}\right) } \cos{\left( {{\varphi }_2}\right) } {{\cos{\left( {{\varphi }_3}\right) }}^{2}}-\sin{\left( {{\varphi }_1}\right) } \cos{\left( {{\varphi }_2}\right) } {{\sin{\left( {{\theta }_3}\right) }}^{2}}}{\sin{\left( {{\varphi }_2}\right) } \sin{\left( {{\theta }_3}\right) }}\\ | |||
\sin{\left( {{\theta }_2}\right) }=-\frac{\sin{\left( {{\varphi }_1}\right) } \sin{\left( {{\theta }_3}\right) }}{\sin{\left( {{\varphi }_2}\right) } \sin{\left( {{\varphi }_3}\right) }+\sin{\left( {{\varphi }_1}\right) } \cos{\left( {{\varphi }_2}\right) } \cos{\left( {{\varphi }_3}\right) }}\\ | |||
\cos{\left( {{\theta }_2}\right) }=\frac{\cos{\left( {{\varphi }_1}\right) } \sin{\left( {{\varphi }_2}\right) } \sin{\left( {{\theta }_3}\right) }}{\sin{\left( {{\varphi }_2}\right) } \sin{\left( {{\varphi }_3}\right) }+\sin{\left( {{\varphi }_1}\right) } \cos{\left( {{\varphi }_2}\right) } \cos{\left( {{\varphi }_3}\right) }}\\ | |||
\sin{\left( {{\theta }_1}\right) }=\frac{\sin{\left( {{\varphi }_2}\right) } \sin{\left( {{\varphi }_3}\right) }+\sin{\left( {{\varphi }_1}\right) } \cos{\left( {{\varphi }_2}\right) } \cos{\left( {{\varphi }_3}\right) }}{\sin{\left( {{\theta }_3}\right) }}\\ | |||
\cos{\left( {{\theta }_1}\right) }=\cos{\left( {{\varphi }_1}\right) } \cos{\left( {{\varphi }_2}\right) }\\ | |||
{{\sin{\left( {{\theta }_3}\right) }}^{2}}=\frac{{{\sin{\left( {{\varphi }_2}\right) }}^{2}} {{\sin{\left( {{\varphi }_3}\right) }}^{2}}+2 \sin{\left( {{\varphi }_1}\right) } \cos{\left( {{\varphi }_2}\right) } \sin{\left( {{\varphi }_2}\right) } \cos{\left( {{\varphi }_3}\right) } \sin{\left( {{\varphi }_3}\right) }+\left( 1-{{\cos{\left( {{\varphi }_1}\right) }}^{2}}\right) {{\cos{\left( {{\varphi }_2}\right) }}^{2}} {{\cos{\left( {{\varphi }_3}\right) }}^{2}}}{1-{{\cos{\left( {{\varphi }_1}\right) }}^{2}} {{\cos{\left( {{\varphi }_2}\right) }}^{2}}}\end{array} | |||
::<math></math> | |||
Version vom 4. April 2022, 13:04 Uhr
Definition
In Kugelkoordinaten oder räumlichen Polarkoordinaten wird ein Punkt P im dreidimensionalen Raum durch seinen Abstand vom Ursprung und zwei Winkel angegeben.
So ist der Vektor vom Ursprung zum Punkt P
mit
- .
Die Kugelkoordinaten kann man - ähnlich wie bei den Euler-Winkeln -zur Definition eines neuen, lokalen Koordinatensystems nutzen. Neben dem Flächen-Normalenvektor spannen dabei die Tangentialvektoren zu φ1 und φ2 eine neue Basis auf.
Die Koordinatentransformation erfolgt über
mit der Transformationsmatrix
Transformation von Euler-Winkeln
Oft kann man räumliche Polarkoordinaten besser interpretieren als Euler-Winkel. Wir schreiben deshalb hier eine Transformationsvorschrift an, mit der Euler-Winkel in Polarkoordinaten übersetzten kann.
Dabei geben wir von einem Punkt P in Euler-Koordinaten mit
\begin{array}{l}\cos{\left( {{\theta }_3}\right) }=\frac{\sin{\left( {{\varphi }_2}\right) } \cos{\left( {{\varphi }_3}\right) } \sin{\left( {{\varphi }_3}\right) }+\sin{\left( {{\varphi }_1}\right) } \cos{\left( {{\varphi }_2}\right) } {{\cos{\left( {{\varphi }_3}\right) }}^{2}}-\sin{\left( {{\varphi }_1}\right) } \cos{\left( {{\varphi }_2}\right) } {{\sin{\left( {{\theta }_3}\right) }}^{2}}}{\sin{\left( {{\varphi }_2}\right) } \sin{\left( {{\theta }_3}\right) }}\\ \sin{\left( {{\theta }_2}\right) }=-\frac{\sin{\left( {{\varphi }_1}\right) } \sin{\left( {{\theta }_3}\right) }}{\sin{\left( {{\varphi }_2}\right) } \sin{\left( {{\varphi }_3}\right) }+\sin{\left( {{\varphi }_1}\right) } \cos{\left( {{\varphi }_2}\right) } \cos{\left( {{\varphi }_3}\right) }}\\ \cos{\left( {{\theta }_2}\right) }=\frac{\cos{\left( {{\varphi }_1}\right) } \sin{\left( {{\varphi }_2}\right) } \sin{\left( {{\theta }_3}\right) }}{\sin{\left( {{\varphi }_2}\right) } \sin{\left( {{\varphi }_3}\right) }+\sin{\left( {{\varphi }_1}\right) } \cos{\left( {{\varphi }_2}\right) } \cos{\left( {{\varphi }_3}\right) }}\\ \sin{\left( {{\theta }_1}\right) }=\frac{\sin{\left( {{\varphi }_2}\right) } \sin{\left( {{\varphi }_3}\right) }+\sin{\left( {{\varphi }_1}\right) } \cos{\left( {{\varphi }_2}\right) } \cos{\left( {{\varphi }_3}\right) }}{\sin{\left( {{\theta }_3}\right) }}\\ \cos{\left( {{\theta }_1}\right) }=\cos{\left( {{\varphi }_1}\right) } \cos{\left( {{\varphi }_2}\right) }\\ {{\sin{\left( {{\theta }_3}\right) }}^{2}}=\frac{{{\sin{\left( {{\varphi }_2}\right) }}^{2}} {{\sin{\left( {{\varphi }_3}\right) }}^{2}}+2 \sin{\left( {{\varphi }_1}\right) } \cos{\left( {{\varphi }_2}\right) } \sin{\left( {{\varphi }_2}\right) } \cos{\left( {{\varphi }_3}\right) } \sin{\left( {{\varphi }_3}\right) }+\left( 1-{{\cos{\left( {{\varphi }_1}\right) }}^{2}}\right) {{\cos{\left( {{\varphi }_2}\right) }}^{2}} {{\cos{\left( {{\varphi }_3}\right) }}^{2}}}{1-{{\cos{\left( {{\varphi }_1}\right) }}^{2}} {{\cos{\left( {{\varphi }_2}\right) }}^{2}}}\end{array}
Links
- Kugelkoordinaten auf Wikipedia
- Sources/Lexikon/Eulersche Winkel
- Quaternionen für Drehungen
- Geographische Koordinaten
Literature
- ...