Sources/Lexikon/Kugelkoordinaten: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
In Kugelkoordinaten oder räumlichen Polarkoordinaten wird ein Punkt ''P'' im dreidimensionalen Raum durch seinen Abstand vom Ursprung und zwei Winkel angegeben.
[[Datei:Kugelkoordinaten-01.png|210px|left|mini|Kugelkoordinaten r, φ<sub>1</sub>, φ<sub>2</sub> eines Punktes ''P'' und kartesisches Koordinatensystem mit den Achsen x<sub>1</sub>, x<sub>2</sub>,x<sub>3</sub>.]]






Die Kugelkoordinaten kann man - ähnlich wie bei den [[Sources/Lexikon/Eulersche_Winkel|Euler-Winkeln]] -zur Definition eines neuen, lokalen  Koordinatensystems nutzen.
Neben dem Flächen-Normalenvektor <math>\vec{e}_r</math> spannen dabei die Tangentialvektoren <math>\vec{e}_{\varphi,1}, \vec{e}_{\varphi,2}</math> zu φ<sub>1</sub> und φ<sub>2</sub> eine neue Basis <math>\vec{\underline{e}}_K</math> auf.
[[Datei:Kugelkoordinaten-02.png|210px|right|mini|Einheitsvektoren der Orthogonalbasis <math>\vec{\underline{e}}_K = \left[\vec{e}_r, \vec{e}_{\varphi,1}, \vec{e}_{\varphi,2}\right]</math>, die in Punkt ''P'' der Kugel mit <math>\vec{e}_r</math> die Flächennormale definieren und mit <math>\vec{e}_{\varphi,1}, \vec{e}_{\varphi,2}</math> die Tangentialebene aufspannen.]]
Die Transformations




[[Datei:Kugelkoordinaten-01.png|210px|left|mini|Kugelkoordinaten r, φ<sub>1</sub>, φ<sub>2</sub> eines Punktes ''P'' und kartesisches Koordinatensystem mit den Achsen x<sub>1</sub>, x<sub>2</sub>,x<sub>3</sub>.]]
'''Links'''
# [https://de.wikipedia.org/wiki/Kugelkoordinaten Kugelkoordinaten auf Wikipedia]
# [[Sources/Lexikon/Eulersche Winkel]]


[[Datei:Kugelkoordinaten-02.png|210px|right|mini|Einheitsvektoren der Orthogonalbasis <math>\vec{\underline{e}}_K = \left[\vec{e}_r, \vec{e}_{\varphi,1}, \vec{e}_{\varphi,2}\right]</math>, die in Punkt ''P'' der Kugel mit <math>\vec{e}_r</math> die Flächennormale definieren und mit <math>\vec{e}_{\varphi,1}, \vec{e}_{\varphi,2}</math> die Tangentialebene aufspannen.]]
'''Literature'''
* ...

Version vom 4. April 2022, 11:39 Uhr

In Kugelkoordinaten oder räumlichen Polarkoordinaten wird ein Punkt P im dreidimensionalen Raum durch seinen Abstand vom Ursprung und zwei Winkel angegeben.

Kugelkoordinaten r, φ1, φ2 eines Punktes P und kartesisches Koordinatensystem mit den Achsen x1, x2,x3.


Die Kugelkoordinaten kann man - ähnlich wie bei den Euler-Winkeln -zur Definition eines neuen, lokalen Koordinatensystems nutzen. Neben dem Flächen-Normalenvektor spannen dabei die Tangentialvektoren zu φ1 und φ2 eine neue Basis auf.

Einheitsvektoren der Orthogonalbasis , die in Punkt P der Kugel mit die Flächennormale definieren und mit die Tangentialebene aufspannen.

Die Transformations


Links

  1. Kugelkoordinaten auf Wikipedia
  2. Sources/Lexikon/Eulersche Winkel

Literature

  • ...