Gelöste Aufgaben/GYRQ: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 119: | Zeile 119: | ||
\cdot | \cdot | ||
\ddot{\underline{\varphi}} | \ddot{\underline{\varphi}} | ||
+ | |||
\begin{pmatrix}\left( {{{{\omega }_2}}^{2}} \cos{\left( {{\phi }_1}\right) } \sin{\left( {{\phi }_1}\right) }+{{\omega }_2} {{\omega }_3} \sin{\left( {{\phi }_1}\right) }\right) {I_z}-{{{{\omega }_2}}^{2}} \cos{\left( {{\phi }_1}\right) } \sin{\left( {{\phi }_1}\right) } {I_y}\\ | |||
\left( -2 {{\omega }_1} {{\omega }_2} \cos{\left( {{\phi }_1}\right) } \sin{\left( {{\phi }_1}\right) }-{{\omega }_1} {{\omega }_3} \sin{\left( {{\phi }_1}\right) }\right) {I_z}+2 {{\omega }_1} {{\omega }_2} \cos{\left( {{\phi }_1}\right) } \sin{\left( {{\phi }_1}\right) } {I_y}\\ | |||
-{{\omega }_1} {{\omega }_2} \sin{\left( {{\phi }_1}\right) } {I_z}\end{pmatrix} | |||
\cdot | |||
\dot{\underline{\varphi}} | |||
= | = | ||
\begin{pmatrix}-\frac{\displaystyle 2 H g m}{3} \sin{\left( | \begin{pmatrix}-\frac{\displaystyle 2 H g m}{3} \sin{\left( \phi_1\right)\\ | ||
0\\ | 0\\ | ||
0\end{pmatrix} | 0\end{pmatrix} | ||
Zeile 223: | Zeile 229: | ||
I_z& 0 & 0\\ | I_z& 0 & 0\\ | ||
0 & 0 & 0\end{pmatrix}\cdot \dot{\underline{\varphi}} | 0 & 0 & 0\end{pmatrix}\cdot \dot{\underline{\varphi}} | ||
+ | |||
\begin{pmatrix}\left( {{{{\omega }_2}}^{2}} \cos{\left( {{\phi }_1}\right) } \sin{\left( {{\phi }_1}\right) }+{{\omega }_2} {{\omega }_3} \sin{\left( {{\phi }_1}\right) }\right) {I_z}-{{{{\omega }_2}}^{2}} \cos{\left( {{\phi }_1}\right) } \sin{\left( {{\phi }_1}\right) } {I_y}\\ | |||
\left( -2 {{\omega }_1} {{\omega }_2} \cos{\left( {{\phi }_1}\right) } \sin{\left( {{\phi }_1}\right) }-{{\omega }_1} {{\omega }_3} \sin{\left( {{\phi }_1}\right) }\right) {I_z}+2 {{\omega }_1} {{\omega }_2} \cos{\left( {{\phi }_1}\right) } \sin{\left( {{\phi }_1}\right) } {I_y}\\ | |||
-{{\omega }_1} {{\omega }_2} \sin{\left( {{\phi }_1}\right) } {I_z}\end{pmatrix} | |||
= | = | ||
\frac{\displaystyle 2}{\displaystyle 3} H m g \begin{pmatrix}1&0&0\\0&1&0\\0&0&0\end{pmatrix}\cdot \underline{\varphi} | \frac{\displaystyle 2}{\displaystyle 3} H m g \begin{pmatrix}1&0&0\\0&1&0\\0&0&0\end{pmatrix}\cdot \underline{\varphi} |
Version vom 3. April 2022, 16:27 Uhr
Aufgabenstellung
Die Bewegung eines Kreisels kann man auch anderes als in Aufgabe GYRO mit Euler-Drehwinkeln abbilden, die nicht immer leicht zu interpretieren sind. Natürlich könnten wir dafür in der Ergebnisdarstellung die Euler-Winkel z.B. in Quaternionen umrechnen. Aber hier wollen wir ausprobieren, wie die Bewegungsgleichungen selbst in anderen Koordinaten (vgl. Drehgruppe) aussehen. Und ob wir dadurch numerische Vorteile erwarten können.
Alles andere ist so wie in GYRO.
Gesucht ist die Präzessions-Bahn eines Kreisels mit Quaternionen / Kugelkoordinanten. Unser Kreisel ist ein Kegel der Höhe H und Radius R. Die Bewegungsgleichungen sollen mit dem Prinzip der virtuellen Verrückungen aufgestellt werden. Wir suchen nach der Trajektorie des Mittelpunktes des Kreisels für große Kippwinkel.
Lösung mit Maxima und Matlab®
Wir arbeiten mit Maxima und Matlab.
Maxima brauchen wir zum Aufstellen der Bewegungsgleichungen, die zunächst mal recht komplex aussehen. Dabei nehmen wir die Bewegungsgleichungen wie sie aus den Gleichgewichtsbedingungen kommen und lösen sie als Anfangswertproblem.
Header
Für die Beschreibung von Drehungen werden oft Quaternionen genutzt. Dabei wird eine Drehung durch die neue Lage der x3-Achse sowie eine Drehung um diese Achse beschreiben. Für die Ermittlung von Bewegungsgleichungen - z.B. eines Kreisels - eignen sich Quaternionen aber nicht gut: für die Abbildung muss man dafür sorgen, dass die Euler-Achse ein Einheits-Vektor ist.
Mit einer kleinen Änderungen können wir diese Idee trotzdem weiter verfolgen. Wir nutzen Kugelkoordinaten, um ein Kippen um die Winkel φ1, φ2 zu erfassen, genau wie bei der Beschreibung von Länge- und Breitengraden auf der Erde.
Die Transformationsmatrix zu diesem Ansatz ist
Mit einer weiteren Drehung φ3 um die Rotationsachse lösen also auch hier das Anfangswertproblem mit den nichtlinearen Bewegungsgleichungen zu den Koordinaten
- ,
Dabei sind die Kippwinkel φ1, φ2 nicht mehr die Winkel aus den Euler'schen Drehmatrizen für sukzessive Drehungen bezüglich der x1- und x2-Achsen sind, sondern die Winkel von Kugelkoordinaten.
Wie zuvor kommen nun die Gleichgewichtsbedingungen aus dem Prinzip der virtuellen Verrückungen.
/*******************************************************/
/* MAXIMA script */
/* version: wxMaxima 21.05.2 */
/* author: Andreas Baumgart */
/* last updated: 2022-04-01 */
/* ref: gyroscopic precession */
/* description: solve using principle of virt. work */
/*******************************************************/
Declarations
Wir brauchen zunächst die Transformationsmatrizen aus sowie die bekannten Transformationsmatrizen der Euler-Rotation, also die Drehmatrizen, die unser inertiales Koordinatensystem in das Kreiselfeste Koordinatensystem überführt. Wir kippen also zunächst um die x1 und x'3-Achse und schließlich um die resultierende Rotationsachse x'3. Die Koordinatentransformation ist dann
- .
Und wir führen wiederum die folgenden Abkürzungen für die Systemparameter
und die Zustandsgrößen
ein.
/*Declarations */
/* Euler-Drehmatrizen */
D[1](φ) := matrix([1,0,0],[0,cos(φ),sin(φ)],[0,-sin(φ),cos(φ)]);
D[2](φ) := matrix([cos(φ),0,-sin(φ)],[0,1,0],[sin(φ),0,cos(φ)]);
D[3](φ) := matrix([cos(φ),sin(φ),0],[-sin(φ),cos(φ),0],[0,0,1]);
/* Kugelkoordinanten */
D[12](θ,φ):= matrix([ cos(θ)*cos(φ), cos(θ)*sin(φ), -sin(θ)],
[ -sin(φ), cos(φ), 0 ],
[ sin(θ)*cos(φ), sin(θ)*sin(φ), cos(θ)]);
coord: [[ φ[1](t), φ[2](t), φ[3](t)],
[δφ[1] ,δφ[2] ,δφ[3] ]];
q: funmake('matrix,makelist([coord[1][i]],i,1,3));
abbr: makelist(diff(φ[i](t),t)=ω[i](t),i,1,3);
params: [
I[y] = m * 3/20*( R^2+4*H^2),
I[z] = m * 3/10* R^2,
m = ρ*%pi*R^2*H/3 ];
params: append(subst(params[3], [params[1], params[2]]),[params[3]]);
params: [params, makelist(solve(params[i], [H^3,R^4,R^2][i])[1],i,1,3)];
Equations of Motion
Die Gleichgewichtsbedingungen für den starren Kreisel (die virtuelle Formänderungenergie ist Null) kommen aus
- ,
wobei wir nur eine Kraft F - die Gewichtskraft - haben und V das Kreisel-Volumen ist.
Mit dem Ortsvektor zu einem Punkt des Kreisels
können wir nun die virtuelle Gesamtarbeit des Systems ausrechnen. Die Parameter mit R und H ersetzen wir durch die oben definierten Abkürzungen und erhalten die gekoppelten Bewegungsgleichungen
- Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix}{I_y} & 0 & 0\\ 0 & \left( 1-{{\sin{\left( {{\phi }_1}(t)\right) }}^{2}}\right) {I_z}+{{\sin{\left( {{\phi }_1}(t)\right) }}^{2}} {I_y} & \cos{\left( {{\phi }_1}(t)\right) } {I_z}\\ 0 & \cos{\left( {{\phi }_1}(t)\right) } {I_z} & {I_z}\end{pmatrix} \cdot \ddot{\underline{\varphi}} + \begin{pmatrix}\left( {{{{\omega }_2}}^{2}} \cos{\left( {{\phi }_1}\right) } \sin{\left( {{\phi }_1}\right) }+{{\omega }_2} {{\omega }_3} \sin{\left( {{\phi }_1}\right) }\right) {I_z}-{{{{\omega }_2}}^{2}} \cos{\left( {{\phi }_1}\right) } \sin{\left( {{\phi }_1}\right) } {I_y}\\ \left( -2 {{\omega }_1} {{\omega }_2} \cos{\left( {{\phi }_1}\right) } \sin{\left( {{\phi }_1}\right) }-{{\omega }_1} {{\omega }_3} \sin{\left( {{\phi }_1}\right) }\right) {I_z}+2 {{\omega }_1} {{\omega }_2} \cos{\left( {{\phi }_1}\right) } \sin{\left( {{\phi }_1}\right) } {I_y}\\ -{{\omega }_1} {{\omega }_2} \sin{\left( {{\phi }_1}\right) } {I_z}\end{pmatrix} \cdot \dot{\underline{\varphi}} = \begin{pmatrix}-\frac{\displaystyle 2 H g m}{3} \sin{\left( \phi_1\right)\\ 0\\ 0\end{pmatrix} }
Dieses System von gewöhnlichen Differentialgleichung müssen wir nach den Winkelbeschleunigungen lösen - und das geht nur, wenn die Massenmatrix regulär ist. Wir prüfen das anhand der Systemdeterminante
Für den Kippwinkel muss also cos(φ1)≠0 oder 0 < φ1 < 90° gelten. Das können wir für unsere Problemstellung gut einhalten.
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* local vector to some material point with coordinates φ[i](t), i=1,2,3 */
/* trafo, order of rotations: y, x', z'' */
r[p] : matrix([r,0,z]).D[3](α).D[3](φ[3](t)).D[12](φ[1](t),φ[2](t));
δr[p] : sum(subst([ε=0],diff(subst([coord[1][i]=coord[1][i]+ε*coord[2][i]],r[p]),ε)),i,1,3);
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* virtual work of d'Alembert forces */
δW[a] :-ρ*diff(r[p],t,2).δr[p]$
/* integrate over body */
δW[a] : integrate(integrate(integrate(r*δW[a], α,0,2*%pi), r,0,R*(z/H)), z,0,H)$
δW[a] : expand(expand(expand(expand(expand(expand(expand(δW[a])))))))$
δW[a] : expand(subst(params[2],δW[a]));
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* virtual work of external (gravitational) force */
r[m] : subst([r=0, z=2*H/3], r[p]);
δr[m] : sum(subst([ε=0],diff(subst([coord[1][i]=coord[1][i]+ε*coord[2][i]],r[m]),ε)),i,1,3);
δW[g] : m*matrix([0,0,-g]).δr[m];
δW[g] : expand(δW[g]);
Solving
Mit der Spaltenmatrix der Zustandsgrößen
lösen wir die gewöhnlichen Differentialgleichungen
Dazu formulieren wir die Bewegungsgleichungen zunächst in Maxima und übertragen sie dann in ein Matlab©-Script. Die Bewegungsgleichungen machen wir mit der Zeit
dimensionslos (die Winkel selbst sind ja bereits dimensionslos). Die dimensionslose Zeit .
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* equations of motion */
eom: makelist(coeff(-δW[a],coord[2][row]),row,1,3);
/* mass matrix */
M: makelist(makelist(coeff(eom[row],diff(coord[1][col],t,2)),col,1,3),row,1,3);
M: trigsimp(funmake('matrix,M));
/* M^(-1) */
Mi : trigsimp(invert(M));
/* the rest ... */
gyr: trigsimp(expand(eom - M.diff(q,t,2)));
P: makelist(coeff(-δW[g],coord[2][row]),row,1,3);
Matlab©-files
Die Datei-Struktur zeit das Skript GYRQ.m. Classes und Functions sind in den jeweiligen Ordnern. Die Excel-Datei hält alle System-Parameter.
Den komplette Quellcode zu diesem Programm können Sie über dieses ZIP-File rechts herunterladen.
download compressed archive →
Postprocessing
Die Ergebnisse der numerischen Integration tragen wir für die Winkel φ1(t), φ2(t) sowie für die Winkelgeschwindigkeiten ω1(t), ω2(t) auf. Es folgen noch die Trajektorie des Mittellinien-Endpunkts des Kreisels und die Phasendiagramme.
... in Matlab (vgl. zip-Datei)
Nachtrag
Meist linearisiert man die Bewegungsgleichungen, indem man von kleinen Kippwinkeln ausgeht (φ1<<1, φ2<<1). Für den Kreisel gilt außerdem ω1<<ω3, ω2<<ω3 so dass man außerdem ω3 = constant setzten darf. Damit erhalten wir die "übliche" vereinfachte Bewegungsgleichung
<syntaxhighlight lang="lisp" line start=1>
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* simplify */
gyrs: trigsimp(subst(abbr,gyr));
smalls: [ω[1](t)=ε*ω[1](t),ω[2](t)=ε*ω[2](t)];
gyrs: subst([ε^2=0,ε=1],expand(subst(smalls,gyrs)));
G: makelist(makelist(coeff(expand(gyrs[row][1]/ω[3](t)),ω[col](t)),col,1,3),row,1,3); G: trigsimp(funmake('matrix,G));
Dieses lineare System von gewöhnlichen Bewegungsgleichungen kann man dann hervorragend als Eigenwertproblem analysieren.
Links
- ...
Literature
- ...