Gelöste Aufgaben/GYRO: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
KKeine Bearbeitungszusammenfassung
KKeine Bearbeitungszusammenfassung
Zeile 10: Zeile 10:


==Aufgabenstellung==
==Aufgabenstellung==
Kreisel und Ihre Bewegungsgleichungen sind immer wieder eine Herausforderung für Ingenieure. Hier nähern wir uns hier dem Thema mit dem Aufstellen und Lösen der Bewegungsgleichungen für große Winkel - und damit nichtlinearen Differentialgleichungen.  
Kreisel und Ihre Bewegungsgleichungen sind immer wieder eine Herausforderung für uns Ingenieure. Hier nähern wir uns hier dem Thema mit dem Aufstellen und Lösen der Bewegungsgleichungen für große Winkel - und damit nichtlinearen Differentialgleichungen. Die sonst üblichen Linearisierungen führen wir nicht durch - und schauen, ob wir die Gleichungen noch gelöst bekommen.


<onlyinclude>
<onlyinclude>
[[Datei:GYRO-01.png|150px|left|mini|Kreisel mit gelenkiger Fußpunktlagerung.]]
[[Datei:GYRO-01.png|150px|left|mini|Kreisel mit gelenkiger Fußpunktlagerung.]]
Gesucht ist die Präzessions-Bahn der eines Kreisels.
Gesucht ist die Präzessions-Bahn der eines Kreisels.
Unser Kreisel ist ein Kegel der Höhe H und Radius R.  
Unser Kreisel ist ein Kegel der Höhe ''H'' und Radius ''R''.  
Die Bewegungsgleichungen sollen mit dem [[Werkzeuge/Gleichgewichtsbedingungen/Arbeitsprinzipe der Analytischen Mechanik/Prinzip der virtuellen Verrückungen|Prinzip der virtuellen Verrückungen]] aufgestellt werden. Wir suchen nach der Trajektorie des Mittelpunktes des Kreisels für große Kippwinkel.
Die Bewegungsgleichungen sollen mit dem [[Werkzeuge/Gleichgewichtsbedingungen/Arbeitsprinzipe der Analytischen Mechanik/Prinzip der virtuellen Verrückungen|Prinzip der virtuellen Verrückungen]] aufgestellt werden. Wir suchen nach der Trajektorie des Mittelpunktes des Kreisels für große Kippwinkel.
</onlyinclude>
</onlyinclude>
Zeile 22: Zeile 22:
Wir arbeiten mit Maxima und Matlab.
Wir arbeiten mit Maxima und Matlab.


Maxima brauchen wir zum Aufstellen der Bewegungsgleichungen, die zunächst mal sehr komplex aussehen. Dabei linearisieren wir nicht oder gehen von einer Kreiselrotation mit konstanter Geschwindigkeit aus. Für die Lösung als [[Anfangswertprobleme|Anfangswertproblem]] ist das
Maxima brauchen wir zum Aufstellen der Bewegungsgleichungen, die zunächst mal recht komplex aussehen. Dabei nehmen wir die Bewegungsgleichungen wie sie aus den Gleichgewichtsbedingungen kommen und lösen sie als [[Anfangswertprobleme|Anfangswertproblem]].


[[Datei:GYRO-02.png]]
[[Datei:GYRO-02.png|right|Geomertrie des Kreisels]]





Version vom 29. März 2022, 12:39 Uhr


Aufgabenstellung

Kreisel und Ihre Bewegungsgleichungen sind immer wieder eine Herausforderung für uns Ingenieure. Hier nähern wir uns hier dem Thema mit dem Aufstellen und Lösen der Bewegungsgleichungen für große Winkel - und damit nichtlinearen Differentialgleichungen. Die sonst üblichen Linearisierungen führen wir nicht durch - und schauen, ob wir die Gleichungen noch gelöst bekommen.


Kreisel mit gelenkiger Fußpunktlagerung.

Gesucht ist die Präzessions-Bahn der eines Kreisels. Unser Kreisel ist ein Kegel der Höhe H und Radius R. Die Bewegungsgleichungen sollen mit dem Prinzip der virtuellen Verrückungen aufgestellt werden. Wir suchen nach der Trajektorie des Mittelpunktes des Kreisels für große Kippwinkel.


Lösung mit Maxima und Matlab®

Wir arbeiten mit Maxima und Matlab.

Maxima brauchen wir zum Aufstellen der Bewegungsgleichungen, die zunächst mal recht komplex aussehen. Dabei nehmen wir die Bewegungsgleichungen wie sie aus den Gleichgewichtsbedingungen kommen und lösen sie als Anfangswertproblem.

Geomertrie des Kreisels
Geomertrie des Kreisels


Header

Wir lösen hier das Anfangswertproblem zu nichtlinearen Bewegungsgleichungen.

Diese Gleichungen haben wir nicht - wir entwickeln sie ad-hoc und achten nur darauf, zentrale Phänomene abzubilden. Eine Abbildung der realen Zahlen ist nicht beabsichtigt.


/*******************************************************/
/* MAXIMA script                                       */
/* version: wxMaxima 21.05.2                           */
/* author: Andreas Baumgart                            */
/* last updated: 2022-03-27                            */
/* ref: gyroscopic precession                          */
/* description: solve using principle of virt. work    */
/*******************************************************/




Declarations

Wir brauchen


1+1




Equations of Motion

Wir brauchen


1+1




Solving

Wir brauchen


1+1




Postprocessing

Wir brauchen


1+1






Links

  • ...

Literature

  • ...