Gelöste Aufgaben/COVI: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 41: | Zeile 41: | ||
infiziert. | infiziert. | ||
== Lösung mit Matlab == | == Lösung mit Matlab<sup>®</sup> == | ||
{{MyCodeBlock|title=Header| | {{MyCodeBlock|title=Header| | ||
text=Wir lösen hier das Anfangswertproblem zu nichtlinearen Bewegungsgleichungen. | text=Wir lösen hier das Anfangswertproblem zu nichtlinearen Bewegungsgleichungen. |
Aktuelle Version vom 7. November 2021, 16:45 Uhr
Aufgabenstellung
Als Ingenieure können wir die COVID-19-Epidemie in Deutschland genauso modellieren wie technische Systeme. Wir brauchen dazu "Koordinaten" - also Messgrößen - die die quatitativen Größen des Krankheitsverlaufs erfassen.
Gesucht ist hier ein phänomenologisches Modell für die Entwicklung der Anzahl der Individuen, die
- ansteckbar "a",
- infiziert "i" - mit und ohne Sympthome - und
- genesen "r"
sind.
Für jede dieser Koordinaten müssen wir "Bewegungsgleichungen" - also Differentialbeziehungen in der Zeit als Anfangswertproblem - hinschreiben.
Das nennen wir "Modellbildung".
🧨 Dies ist kein zuverlässiges Prognosewerkzweug: |
Hier geht es um die Modellierung
|
Die algebraischen und Differentialgleichungen, die wir erhalten, sind dabei nicht das Ergebnis von Gleichgewichtsbeziehungen wie in der Technischen Mechanik. Wir begnügen uns statt dessen damit, Phänomene der Epidemie mit unserer Mathematik zu erfassen.
Und so gehen wir vor:
Wir modellieren eine Grundgesamtheit von n0 = 80 Millionen Individuen.
Die Pandemie soll bei einer Durchseuchung von α=50% zum Stillstand kommen - die Individuen sind dann so weit voneinander entfernt, dass eine Ansteckung unwahrscheinlich ist.
Zum Zeitpunkt t0=0 seien von insgesamt i0 Individuen mit
infiziert.
Lösung mit Matlab®
Header
Wir lösen hier das Anfangswertproblem zu nichtlinearen Bewegungsgleichungen.
Diese Gleichungen haben wir nicht - wir entwickeln sie ad-hoc und achten nur darauf, zentrale Phänomene abzubilden. Eine Abbildung der realen Zahlen ist nicht beabsichtigt.
%*******************************************************
%* matlab script *
%* version: R2020a *
%* author: Andreas Baumgart *
%* last updated: 2020-03-25 *
%* ref: Technische Mechanik mit Computer *
%* description: COVID-19 Simulation *
%* no spatial resoultion *
%*******************************************************
Declarations
Wir verwenden diese Parameter aus einer Tabelle
und erklären unten, wie wir sie einsetzten.
cd 'C:\Users\abs384\OneDrive\Confluence Sources\COVI'
addpath('.\functions')
% load parameters
parameter = readtable('parameter.xlsx');
for row=1:length(parameter.name)
eval(strcat(char(parameter.name(row)),'=', num2str(parameter.zahl(row))))
end
Equations of Motion
Die Bewegungsgleichungen schreiben wir für die Anzahl der Individuen an,
- die infiziert sind (Koordinate "i") und
- die genesen sind (Koordinate "r").
Die Anzahl der Individuen, die sich noch anstecken können, ergibt sich dann aus
Unsere "Minimal-Koordinaten" des Systems sind also i und r.
Jetzt lassen wir unserer Fantasie freien Lauf:
function dydt = covid19(t,y,dt,DS,n,a0,lambda)
% COVID19 Evaluate the COVID19 ODEs
%
% last updated: 2020-03-24
% author: Andreas Baumgart
% present state of pandemy
q = y(end,:);
% individuals left to be infected
a = n - sum(q);
% assign i=0 for t<0
if length(y)>DS
i = y(end-DS,1);
else
i=0;
end
% recovery rate
r = dt*lambda(2)*i;
% infected % recovered
dydt=[dt*lambda(1)*q(1)*(a-a0)-r, r ];
end
Solving
1: Die Bewegungsgleichung für r
Die Änderung der Anzahl der Genesenen ist proportional zu Anzahl der Infizierten. Man könnte man also
anschreiben. Allerdings genesen zum Zeitpunkt t die Personen, die sich zum Zeitpunkt t-ΔT infiziert hatten. Dazwischen liegt gerade der gesamte Krankheitsverlauf mit der Dauer ΔT. Also schreiben wir
und nennen ΔT die Genesungsdauer - oder in Begriffen der Schwingungslehre: Totzeit (engl.: "dead-time").
2: Die Bewegungsleichungen für i
Die Änderung der Anzahl der Infizierten steigt mit der Anzahl der Infizierten i selbst und mit der Anzahl der ansteckbaren Individuen a. Sie reduziert sich um die Änderung der Anzahl der genesenen Individuen r. Allerdings weiß man aus Erfahrung, dass eine Epedemie endet, wenn ein bestimmter Durchseuchungsgrad α erreicht ist. Also wählen wir
- .
Beim Auftragen des Produkts i∙(a-a0) unten erkennt man gut, wie die Funktion für i=0 und (a-a0)=0 Null liefert - also die Zuwachsrate der Infizierten Null ist, wenn niemand infiziert ist oder die Anzahl der ansteckbaren Individuen Null ist. Dazwischen steigt die Funktion steil an:
Damit haben wir zwei Bewegungsdifferentialgleichungen, die wir in die Matlab-Funktion "covid19" schrieben.
Die Bewegungsgleichungen machen wir dimensionslos mit
und erhalten als Bewegungsgleichungen
- .
% limit of infection
a0= n*alpha
% initial values in Mio. individuals
y = [ 1E-3 0];
% time steps and "dates"
dt=0.1;
t=0:dt:50;
% dead-time given in integration steps
DS=int16(round(DT/dt));
% make lambda dim'less
lambda = DT*lambda;
% Eulers Method
for j=2:length(t)
y(end+1,:)=y(end,:) + covid19(t,y,dt,DS,n,a0,lambda);
end
Postprocessing
Die Ergebnisse plotten wir für verschiedene Werte von λ:
Hier sieht man, wie unterschiedliche Ansteckungsraten zu unterschiedlich hohen Maximalwerten in den Infizierten i zu einem bestimmten Zeitpunkt führen. Und warum es sinnvoll ist, dieses λ niedrig zu halten.
% plot results
hold on
plot(t,y(:,1))
plot(t,y(:,2))
plot(t,n-y(:,1)-y(:,2))
hold off
legend('i(t)','r(t)','a(t)')
xlabel('t / tBez →')
ylabel('Individuen / Mio →')