Sources/Lernvideos/T6C0: Unterschied zwischen den Versionen
< Sources | Lernvideos
(Die Seite wurde neu angelegt: „n“) |
Keine Bearbeitungszusammenfassung |
||
Zeile 1: | Zeile 1: | ||
[[Datei:T6C0.mp4|rand|mini|300px]] | |||
{{MyCodeBlock|title= Maxima Sourcecode | |||
|text= | |||
Generiert das Gleichungssystem | |||
::<math>\underline{\underline{A}}\cdot\underline{x}=b</math> | |||
und löst es. | |||
|code= | |||
/* maxima file: solving for reation forces */ | |||
/* author: A.Baumgart@haw-hamburg.de */ | |||
/* date: 2015-11-05 */ | |||
/* ref: ELFE-T6C */ | |||
/* definition of equations and variables */ | |||
equs : [N[2]*1/2*sqrt(2) - N[1]*1/2*sqrt(2) = 0, | |||
N[1]*1/2*sqrt(2) + N[2]*1/2*sqrt(2) - mg = 0, | |||
+ sqrt(2)*a*N[2] + 2*a*B[y] - a*S = 0, | |||
- C[x] - S - N[2]*1/2*sqrt(2) = 0, | |||
- C[y] + B[y] - N[2]*1/2*sqrt(2) = 0, | |||
- sqrt(2)*a*N[2] - 2*a*A[y] + a*S + 2*a*A[x] = 0, | |||
+ C[x] + S + N[1]*1/2*sqrt(2) + A[x] = 0, | |||
+ C[y] + A[y] - N[1]*1/2*sqrt(2) = 0]; | |||
q: [N[1],N[2],A[x],A[y],C[x],C[y],B[y],S]; | |||
/* solves the system of linear equations for q */ | |||
sol[1] : solve(equs,q); | |||
/* solves the problem in matrix-form: A.v=f */ | |||
/* = - - */ | |||
M: augcoefmatrix (equs, q)$; | |||
A : submatrix (M, 9); | |||
f : - col(M,9); | |||
sol[2]: linsolve_by_lu(A,f)[1] | |||
/* EOF */ | |||
}} |
Version vom 20. April 2021, 05:47 Uhr
Maxima Sourcecode
Generiert das Gleichungssystem
und löst es.
/* maxima file: solving for reation forces */
/* author: A.Baumgart@haw-hamburg.de */
/* date: 2015-11-05 */
/* ref: ELFE-T6C */
/* definition of equations and variables */ equs : [N[2]*1/2*sqrt(2) - N[1]*1/2*sqrt(2) = 0,
N[1]*1/2*sqrt(2) + N[2]*1/2*sqrt(2) - mg = 0, + sqrt(2)*a*N[2] + 2*a*B[y] - a*S = 0, - C[x] - S - N[2]*1/2*sqrt(2) = 0, - C[y] + B[y] - N[2]*1/2*sqrt(2) = 0, - sqrt(2)*a*N[2] - 2*a*A[y] + a*S + 2*a*A[x] = 0, + C[x] + S + N[1]*1/2*sqrt(2) + A[x] = 0, + C[y] + A[y] - N[1]*1/2*sqrt(2) = 0];
q: [N[1],N[2],A[x],A[y],C[x],C[y],B[y],S];
/* solves the system of linear equations for q */ sol[1] : solve(equs,q);
/* solves the problem in matrix-form: A.v=f */ /* = - - */
M: augcoefmatrix (equs, q)$; A : submatrix (M, 9); f : - col(M,9); sol[2]: linsolve_by_lu(A,f)[1]
/* EOF */