Sources/Anleitungen/FEM-Formulierung für den Euler-Bernoulli-Balken: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 138: Zeile 138:




====... für die rechte Seite des Gleichungssystems - aus äußeren, einprägten Lasten wie z.B. Streckenlasten ''q<sub>0</sub>∙ψ''.
====... für die rechte Seite des Gleichungssystems - aus äußeren, einprägten Lasten wie z.B. Streckenlasten ''q<sub>0</sub>∙ψ''====


Die virutelle Arbeit dieser äußeren Streckenlast ist
Die virutelle Arbeit dieser äußeren Streckenlast ist
Zeile 147: Zeile 147:


::<math>\begin{array}{l}\psi_1 = 1\\\psi_2=1-\xi\\\psi_3=\xi\\\psi_4=4\cdot \left( \xi-{{\xi}^{2}}\right) \end{array}</math>
::<math>\begin{array}{l}\psi_1 = 1\\\psi_2=1-\xi\\\psi_3=\xi\\\psi_4=4\cdot \left( \xi-{{\xi}^{2}}\right) \end{array}</math>
<table class="wikitable" style="background-color:white; margin-right:14px;">
<tr><th>Werte von <math>\displaystyle \int_0^1 \phi_i\cdot \psi_j  \; d\xi</math></th><th><math>\phi''_1</math></th><th><math>\phi''_2</math></th><th><math>\phi''_3</math></th><th><math>\phi''_4</math></th></tr>
<tr><th><math>\psi''_1</math> [[Datei:Anleitung-EBB-psi-1.png|rahmenlos|100x100px]] </th><td><math></math></td><td><math></math></td><td><math></math></td><td><math></math></td></tr>
<tr><th><math>\psi''_2</math> [[Datei:Anleitung-EBB-phi-2.png|rahmenlos|100x100px]] </th><td><math></math></td><td><math></math></td><td><math></math></td><td><math></math></td></tr>
<tr><th><math>\psi''_3</math> [[Datei:Anleitung-EBB-psi-03.png|rahmenlos|100x100px]]</th><td><math></math></td><td><math></math></td><td><math></math></td><td><math></math></td></tr>
<tr><th><math>\psi''_4</math> [[Datei:Anleitung-EBB-psi-04.png|rahmenlos|100x100px]]</th><td><math></math></td><td><math></math></td><td><math></math></td><td><math></math></td></tr>
</table>


<hr/>
<hr/>
Zeile 154: Zeile 163:
'''Literature'''
'''Literature'''
* ...
* ...
[[Datei:Anleitung-EBB-psi-1.png|rahmenlos|100x100px]]
[[Datei:Anleitung-EBB-phi-2.png|rahmenlos|100x100px]]
[[Datei:Anleitung-EBB-psi-03.png|rahmenlos|100x100px]]
[[Datei:Anleitung-EBB-psi-04.png|rahmenlos|100x100px]]

Version vom 19. April 2021, 13:24 Uhr


Diese Seite fasst die wichtigsten Ergebnisse für die FEM-Formulierung zum Euler-Bernoulli-Balken zusammen.

Maxima-Code für die Element-Matrizen

Hier finden Sie den Sourcecode für die Herleitung der Element-Matrizen.




Trial-Functions

Die Koordinaten eines Finiten Elements sind

Q_(t)=(Wi1(t)Φi1(t)Wi(t)Φi(t)).

Der Ansatz für die Näherung der Auslenkung w(x,t) ist

w(x,t)=i=14Qi(t)ϕi(x)

Die Drehwinkel sind hier so gewählt, dass 

ddxw(x)|x=xi=Φi.
Nodal and independent Coordinates

Trialfunctions

Die einzelnen Trial-Functions sind:

linker Rand (Knoten "i-1")rechter Rand (Knoten "i")
Trial-Function for Wi-1
Trial-Function for Wi
ϕ1(ξ)=(ξ1)2(2ξ+1)ϕ3(ξ)=ξ2(32ξ)
Trial-Function für Φi-1
Trial-Function für Φi
ϕ2(ξ)=iξ(ξ1)2ϕ4(ξ)=iξ2(ξ1)

Faltungsintegrale

... für die symmetrische Massenmatrix

Tabelliert sind die Werte der Integrale

mijϱA=0ϕiϕjdx
ϕ1ϕ2ϕ3ϕ4
ϕ11335i11210i2970i13420i2
ϕ2 1105i313420i21140i4
ϕ3 1335i11210i2
ϕ4symm. 1105i3

... für die symmetrische Steifigkeitsmatrix

Tabelliert sind die Werte der Integrale

kijEI=0ϕiϕjdx
ϕ'1ϕ'2ϕ'3ϕ'4
ϕ'112i36i212i36i2
ϕ'2 4i6i22i
ϕ'3 12i36i2
ϕ'4symm. 4i

Maxima-Code für die Rechte-Seite

Hier finden Sie den Sourcecode für die Herleitung der Spalten-Matrizen der Rechten-Seite des Gleichungssystems.




... für die rechte Seite des Gleichungssystems - aus äußeren, einprägten Lasten wie z.B. Streckenlasten q0∙ψ

Die virutelle Arbeit dieser äußeren Streckenlast ist

δWa=q00ψ(x)δw(x)dx

                       Hier stehen die Faltungsintegrale beispielhaft für 

ψ1=1ψ2=1ξψ3=ξψ4=4(ξξ2)
Werte von 01ϕiψjdξϕ'1ϕ'2ϕ'3ϕ'4
ψ'1
ψ'2
ψ'3
ψ'4



Links

  • ...

Literature

  • ...