Gelöste Aufgaben/W8Zt: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 19: Zeile 19:
Mit dem [[Sources/Lexikon/Föppl-Symbol|Föppl-Symbol "<>"]],  
Mit dem [[Sources/Lexikon/Föppl-Symbol|Föppl-Symbol "<>"]],  


<math>\alpha = a/\ell</math>, <math>\beta = 1-\alpha</math> und <math>\xi = x/\ell</math>
::<math>\alpha = a/\ell</math>, <math>\beta = 1-\alpha</math> und <math>\xi = x/\ell</math>


ist die analytische Lösung:
ist die analytische Lösung:


<math>EI w(x) = \frac{\displaystyle F \ell^3}{\displaystyle 6}\left[ \beta \xi ( 1-\beta^2-\xi^2)+<\xi-\alpha>^3 \right]</math>.
::<math>EI w(x) = \frac{\displaystyle F \ell^3}{\displaystyle 6}\left[ \beta \xi ( 1-\beta^2-\xi^2)+<\xi-\alpha>^3 \right]</math>.


Bei dieser Lösung hat die [[Sources/Lexikon/unabhängige Koordinaten|unabhängige Koordinate]] ''x'' ihren Ursprung in ''A'' - wir verwenden unten einen anderen Ursprung!
Bei dieser Lösung hat die [[Sources/Lexikon/unabhängige Koordinaten|unabhängige Koordinate]] ''x'' ihren Ursprung in ''A'' - wir verwenden unten einen anderen Ursprung!
Zeile 29: Zeile 29:
Mit den passenden Ansatzfunktionen nach Ritz berechnen Sie eine Näherungslösung des Problems.  
Mit den passenden Ansatzfunktionen nach Ritz berechnen Sie eine Näherungslösung des Problems.  


==tmp==
Hier arbeiten wir mit [[Werkzeuge/Software/Maxima|Maxima]].<!-------------------------------------------------------------------------------->


<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Header
{{MyCodeBlock|title=Header
|text=Text
|text=
Hier arbeiten wir mit [[Werkzeuge/Software/Maxima|Maxima]].
|code=
|code=
<syntaxhighlight lang="lisp" line start=1>
<syntaxhighlight lang="lisp" line start=1>
1+1
/*******************************************************/
/* MAXIMA script                                      */
/* version: wxMaxima 15.08.2                          */
/* author: Andreas Baumgart                            */
/* last updated: 2017-09-14                            */
/* ref: TM-C, Labor 3 - aus Gross, Augf. TM 2,Biegestab*/
/* description: finds the approx. solution employing  */
/*              two polynomial trialfunctions          */
/*******************************************************/
</syntaxhighlight>
</syntaxhighlight>
}}
}}


==tmp==


<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Declarations
|text=
Wir definieren zunächst die Symbole für die virtuellen Arbeiten und die virtuellen Verrückungen - die in Maxima nicht standardmäßig verfügbar sind.
Wir definieren zunächst die Symbole für die virtuellen Arbeiten und die virtuellen Verrückungen - die in Maxima nicht standardmäßig verfügbar sind.


Die Annahme ''ℓ>0'' brauchen wir, damit Maxima Wurzel-Ausdrücke mit diesem Parameter richtig vereinfachen kann.<!-------------------------------------------------------------------------------->
Die Annahme ''ℓ>0'' brauchen wir, damit Maxima Wurzel-Ausdrücke mit diesem Parameter richtig vereinfachen kann.
 
 
{{MyCodeBlock|title=Declarations
|text=Text
|code=
|code=
<syntaxhighlight lang="lisp" line start=1>
<syntaxhighlight lang="lisp" line start=1>
1+1
/* declare variational variables - see 6.3 Identifiers */
declare("δW", alphabetic);
declare("δA", alphabetic);
declare("δΠ", alphabetic);
declare("δV", alphabetic);
declare("δΨ", alphabetic);
declare("δw", alphabetic);
 
/* declarations */
assume(l>0);
</syntaxhighlight>
</syntaxhighlight>
}}
}}
<!-------------------------------------------------------------------------------->


==tmp==


Als [[Sources/Lexikon/unabhängige Koordinaten|unabhängige Koordinaten]] des Balkens wählen wir "''x''" entlang der Neutralen Faser mit Ursprung in der Mitte zwischen A und B.
{{MyCodeBlock|title=Formfunctions
|text=
Als [[Sources/Lexikon/unabhängige Koordinaten|unabhängige Koordinaten]] des Balkens wählen wir "''x''" entlang der [[Sources/Lexikon/Euler-Bernoulli-Balken/Neutrale Faser|Neutralen Faser]] mit Ursprung in der Mitte zwischen A und B.


Wir entscheiden uns zunächst für zwei abhängige Koordinaten des Systems und deren Variationen (''δ'')
Wir entscheiden uns zunächst für zwei abhängige Koordinaten des Systems und deren Variationen (''δ'')


<math>
::<math>
\underline{Q} = \left(\begin{array}{c}V\\\Psi\end{array}\right), \delta\underline{Q} = \left(\begin{array}{c}\delta V\\\delta \Psi\end{array}\right), </math>
\underline{Q} = \left(\begin{array}{c}V\\\Psi\end{array}\right), \delta\underline{Q} = \left(\begin{array}{c}\delta V\\\delta \Psi\end{array}\right), </math>


[[Datei:W8Zt-11.png|mini|Koordinaten]]
und wählen ''V'' und ''ψ''  als die Verschiebung und Verdrehung (=Neigung) des Querschnitts im Punkt ''x''=0 des Balkens.
und wählen ''V'' und ''ψ''  als die Verschiebung und Verdrehung (=Neigung) des Querschnitts im Punkt ''x''=0 des Balkens.


Zeile 84: Zeile 101:
mit der Lösung
mit der Lösung


<math>{{c}_{1,0}}=V,{{c}_{1,2}}=-\frac{\displaystyle 4\cdot V}{{{\displaystyle \ell}^{2}}},{{c}_{2,1}}=\Psi,{{c}_{2,3}}=-\frac{\displaystyle 4\cdot \Psi}{\displaystyle {{\ell}^{2}}}</math>[[Datei:W8Zt-12.png|mini|Trial-Functions]]Anstatt der exakten, bekannten Lösung, verwenden wir in diesem Näherungsansatz also nun die Funktion
::<math>{{c}_{1,0}}=V,{{c}_{1,2}}=-\frac{\displaystyle 4\cdot V}{{{\displaystyle \ell}^{2}}},{{c}_{2,1}}=\Psi,{{c}_{2,3}}=-\frac{\displaystyle 4\cdot \Psi}{\displaystyle {{\ell}^{2}}}</math>
 
<math>\mathrm{w}\left( x\right) =-\frac{\displaystyle 4\cdot {{x}^{2}}\cdot V}{{\displaystyle {\ell}^{2}}}+V-\frac{\displaystyle 4\cdot \Psi\cdot {{x}^{3}}}{{\displaystyle {\ell}^{2}}}+\Psi\cdot x</math>,


die beiden Koordinaten ''V'' und ''ψ'' müssen wir noch bestimmen. Die Funktionen, die zu  ''V'' und ''ψ'' gehören, sind rechts aufgetragen:
Anstatt der exakten, bekannten Lösung, verwenden wir in diesem Näherungsansatz also nun die Funktion


Klar ist: die exakte Lösung dieses Lastfalls ist eine Funktion, die im [[Sources/Lexikon/Querkraftverlauf|Querkraftverlauf]] am Kraftangriffspunkt (''x=a - ℓ/2'') einen Sprung hat. Dagegen ist der Querkraftverlauf unserer Näherungslösung stetig differenzierbar und obendrauf noch konstant!<!-------------------------------------------------------------------------------->
::<math>\mathrm{w}\left( x\right) =-\frac{\displaystyle 4\cdot {{x}^{2}}\cdot V}{{\displaystyle {\ell}^{2}}}+V-\frac{\displaystyle 4\cdot \Psi\cdot {{x}^{3}}}{{\displaystyle {\ell}^{2}}}+\Psi\cdot x</math>,


[[Datei:W8Zt-12.png|mini|Trial-Functions]]die beiden Koordinaten ''V'' und ''ψ'' müssen wir noch bestimmen. Die Funktionen, die zu  ''V'' und ''ψ'' gehören, sind rechts aufgetragen:


{{MyCodeBlock|title=Formfunctions
Klar ist: die exakte Lösung dieses Lastfalls ist eine Funktion, die im [[Sources/Lexikon/Querkraftverlauf|Querkraftverlauf]] am Kraftangriffspunkt (''x=a - ℓ/2'') einen Sprung hat. Dagegen ist der Querkraftverlauf unserer Näherungslösung stetig differenzierbar und obendrauf noch konstant!
|text=Text
|code=
|code=
<syntaxhighlight lang="lisp" line start=1>
<syntaxhighlight lang="lisp" line start=1>
Zeile 178: Zeile 193:
Und wir schauen uns für ''α=1/2'' die Verschiebung der Ritz- und analytischen-Lösung im Vergleich an:
Und wir schauen uns für ''α=1/2'' die Verschiebung der Ritz- und analytischen-Lösung im Vergleich an:
[[Datei:W8Zt-32.png|mini|none|Vergleich der Biegelinie für analytische / numerische Lösung]]
[[Datei:W8Zt-32.png|mini|none|Vergleich der Biegelinie für analytische / numerische Lösung]]
{{MyTip|title=Und wissen Sie auch ...|text=... wie der Verlauf der Querkraft im Vergleich Ritz / analytisch aussieht?}}
|code=
|code=
<syntaxhighlight lang="lisp" line start=1>
<syntaxhighlight lang="lisp" line start=1>
Zeile 185: Zeile 202:




{{MyTip|title=Und wissen Sie auch ...|text=... wie der Verlauf der Querkraft im Vergleich Ritz / analytisch aussieht?}}<hr/>
<hr/>
<'''Links'''
<'''Links'''
* ...
* ...
Zeile 191: Zeile 208:
'''Literature'''
'''Literature'''
* ...
* ...
[[Datei:W8Zt-11.png|mini|Koordinaten]]
[[Datei:W8Zt-01.png|mini|Lageplan]]

Version vom 19. April 2021, 09:59 Uhr


Aufgabenstellung

Zu den tabellierten Standardlösungen für den Euler-Bernoulli-Blaken berechnen wir eine Näherungslösung für einen beidseitig gelenkig gelagerten Euler-Bernoulli-Balken:


Caption

Gesucht ist eine Lösung in Anlehnung an das Verfahren von Ritz - bei dem wir mit Formfunktionen arbeiten, die sich über die gesamte Balkenlänge erstrecken, wir aber im dann mit dem Prinzip der virtuellen Verrückungen arbeiten.

Üblich ist bei Verfahren von Rayleigh-Ritz nämlich sonst das Prinzip vom Minimum der Potentiellen Energie.

Lösung mit Maxima

Mit dem Föppl-Symbol "<>",

,  und

ist die analytische Lösung:

.

Bei dieser Lösung hat die unabhängige Koordinate x ihren Ursprung in A - wir verwenden unten einen anderen Ursprung!

Mit den passenden Ansatzfunktionen nach Ritz berechnen Sie eine Näherungslösung des Problems.


Header

Hier arbeiten wir mit Maxima.


/*******************************************************/
/* MAXIMA script                                       */
/* version: wxMaxima 15.08.2                           */
/* author: Andreas Baumgart                            */
/* last updated: 2017-09-14                            */
/* ref: TM-C, Labor 3 - aus Gross, Augf. TM 2,Biegestab*/
/* description: finds the approx. solution employing   */
/*              two polynomial trialfunctions          */
/*******************************************************/




Declarations

Wir definieren zunächst die Symbole für die virtuellen Arbeiten und die virtuellen Verrückungen - die in Maxima nicht standardmäßig verfügbar sind.

Die Annahme ℓ>0 brauchen wir, damit Maxima Wurzel-Ausdrücke mit diesem Parameter richtig vereinfachen kann.


/* declare variational variables - see 6.3 Identifiers */
declare("δW", alphabetic);
declare("δA", alphabetic);
declare("δΠ", alphabetic);
declare("δV", alphabetic);
declare("δΨ", alphabetic);
declare("δw", alphabetic);

/* declarations */
assume(l>0);




Formfunctions

Als unabhängige Koordinaten des Balkens wählen wir "x" entlang der Neutralen Faser mit Ursprung in der Mitte zwischen A und B.

Wir entscheiden uns zunächst für zwei abhängige Koordinaten des Systems und deren Variationen (δ)

Koordinaten

und wählen V und ψ  als die Verschiebung und Verdrehung (=Neigung) des Querschnitts im Punkt x=0 des Balkens.

Jetzt brauchen wir zwei Ansatzfunktionen, die unseren Koordinaten V und ψ entsprechen. Wir wollen diese beiden anschaulich denken können - wir wählen einfache Polynome: eine achsensymmetrische und eine punktsymmetrische Funktion mit den noch unbestimmten Konstanten cij:

Diese beiden Funktionen müssen

  1. Geometrische Randbedingungen erfüllen und
  2. jeweils mit den Koordinaten V und ψ  verknüpft werden.

Die zugehörigen Gleichungen (= die Randbedingungen) sind

  • und

mit der Lösung

Anstatt der exakten, bekannten Lösung, verwenden wir in diesem Näherungsansatz also nun die Funktion

,
Trial-Functions

die beiden Koordinaten V und ψ müssen wir noch bestimmen. Die Funktionen, die zu V und ψ gehören, sind rechts aufgetragen:

Klar ist: die exakte Lösung dieses Lastfalls ist eine Funktion, die im Querkraftverlauf am Kraftangriffspunkt (x=a - ℓ/2) einen Sprung hat. Dagegen ist der Querkraftverlauf unserer Näherungslösung stetig differenzierbar und obendrauf noch konstant!


1+1




tmp

Mit dem Prinzip der virtuellen Verrückungen ist die Gleichgewichtsbedingung immer

Mit den Beiträgen

und dem Einsetzen der Ansatzfunktionen und deren Variation finden wir

Achtung: hier bezeichnet nun α=-1 den Punkt A, α=+1 den Punkt B.

Diese virtuelle Arbeit des Gesamtsystems spalten wir jetzt nach den virtuellen Verrückungen auf und erhalten zwei unabhängige Gleichungen in V und ψ:

Und die können wir leicht lösen:


Equilibrium Conditions

Text


1+1




tmp

In Matrix-Schreibweise stellen wir diesen Ausdruck gewöhnliches lineares Gleichungssystem dar:

mit

sieht das Gleichungssystem wieder handlich aus, die Lösung ist:

Und wissen Sie auch ....:
... warum A hier eine Diagonalmatrix ist? Schauen Sie sich die Koeffizienten bzgl. von α an - was erkennen Sie?


Solve

Text


1+1




tmp

Die Lösung normieren wir noch für das Post-Processing mit der analytischen maximalen Auslenkung im symmetrischen Belastungsfall (wenn F in der Mitte zwischen A und B angreift):

Wir tragen sie für verschiedene Kraft-Angriffspunkte (α=-1,...α=+1) auf:

Parameterstudie: Auslenkung w(a) des Kraft-Einleitungspunktes

Post-Process

Text


1+1




Post-Process - Vergleich mit analytischer Lösung

Und wir schauen uns für α=1/2 die Verschiebung der Ritz- und analytischen-Lösung im Vergleich an:

Vergleich der Biegelinie für analytische / numerische Lösung
Und wissen Sie auch ...:
... wie der Verlauf der Querkraft im Vergleich Ritz / analytisch aussieht?

1+1





<Links

  • ...

Literature

  • ...