Gelöste Aufgaben/UEBP: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 5: Zeile 5:
[[Category:Prinzip vom Minimum der Potentiellen Energie]]
[[Category:Prinzip vom Minimum der Potentiellen Energie]]
[[Category:Biege-Belastung]][[Category:Euler-Bernoulli-Balken]]
[[Category:Biege-Belastung]][[Category:Euler-Bernoulli-Balken]]
[[Category:Rayleigh-Ritz-Prinzip]]
[[Category:Finite-Elemente-Methode‎]][[Category:Rayleigh-Ritz-Prinzip]]
[[Category:Maxima‎]]
[[Category:Maxima‎]]


Zeile 24: Zeile 24:


* dem [[Werkzeuge/Gleichgewichtsbedingungen/Arbeitsprinzipe der Analytischen Mechanik/Prinzip vom Minimum der Potentiellen Energie|Prinzip vom Minimum der Potentiellen Energie]].
* dem [[Werkzeuge/Gleichgewichtsbedingungen/Arbeitsprinzipe der Analytischen Mechanik/Prinzip vom Minimum der Potentiellen Energie|Prinzip vom Minimum der Potentiellen Energie]].
Statt mit
* Ansatzfunktionen über die gesamte Länge des Balkens arbeiten wir
* hier mit zwei Finiten Elementen (Sektionen), für die wir separat ansetzen.
==tmp==
<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Header
|text=Text
|code=
<syntaxhighlight lang="lisp" line start=1>
1+1
</syntaxhighlight>
}}
==tmp==
<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Declarations
|text=Text
|code=
<syntaxhighlight lang="lisp" line start=1>
1+1
</syntaxhighlight>
}}
==tmp==
<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Formfunctions
|text=Text
|code=
<syntaxhighlight lang="lisp" line start=1>
1+1
</syntaxhighlight>
}}
==tmp==
<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Potential Energy
|text=Text
|code=
<syntaxhighlight lang="lisp" line start=1>
1+1
</syntaxhighlight>
}}
==tmp==
<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Equilibrium Conditions
|text=Text
|code=
<syntaxhighlight lang="lisp" line start=1>
1+1
</syntaxhighlight>
}}
==tmp==
<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Solving
|text=Text
|code=
<syntaxhighlight lang="lisp" line start=1>
1+1
</syntaxhighlight>
}}
==tmp==
<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Post-Processing
|text=Text
|code=
<syntaxhighlight lang="lisp" line start=1>
1+1
</syntaxhighlight>
}}





Version vom 19. April 2021, 07:02 Uhr


Aufgabenstellung

Diese Problemstellung liefert einen Näherungsansatz für eine Standardlösung zum Euler-Bernoulli-Balken.

Der Euler-Bernoulli-Balken AB wird durch ein Moment M zwischen den beiden gelenkigen Lagern belastet. 


Lageplan

Gesucht ist eine Lösung für die Biegelinie mit dem Ansatz von Ritz und zwei Trial-Funktionen.

Im Vergleich zu UEBO, das die gleiche Aufgabenstellung hat - arbeiten wir hier mit Ansatzfunktionen in zwei Sektionen wie bei der FEM. Nur das Gleichgewichts-Prinzip bliebt das Gleicht: das Prinzip vom Minimum der Potentiellen Energie.

Lösung mit Maxima

Beim Verfahren von Ritz arbeiten wir mit

Statt mit

  • Ansatzfunktionen über die gesamte Länge des Balkens arbeiten wir
  • hier mit zwei Finiten Elementen (Sektionen), für die wir separat ansetzen.

tmp

Header

Text



tmp

Declarations

Text



tmp

Formfunctions

Text



tmp

Potential Energy

Text



tmp

Equilibrium Conditions

Text



tmp

Solving

Text



tmp

Post-Processing

Text






Verläufe von w(x), ϕ(x)
Vergleich analytische / numerische Lösung für w(x)
Vergleich analytische / numerische Lösung für das Schnittmoment M(x)