Gelöste Aufgaben/UEBP: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
(Die Seite wurde neu angelegt: „h“)
 
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
h
[[Category:Gelöste Aufgaben]]
[[Category:Dimensionslose Schreibweise]]
[[Category:Numerische Lösung]]
[[Category:Randwertproblem]]
[[Category:Prinzip vom Minimum der Potentiellen Energie]]
[[Category:Biege-Belastung]][[Category:Euler-Bernoulli-Balken]]
[[Category:Rayleigh-Ritz-Prinzip]]
[[Category:Maxima‎]]
 
==Aufgabenstellung==
Diese Problemstellung liefert einen Näherungsansatz für eine [[Sources/Lexikon/Euler-Bernoulli-Balken/Standard-Lösungen#Einzelmoment, doppeltgelenkige Lagerung|Standardlösung zum Euler-Bernoulli-Balken]].
 
Der Euler-Bernoulli-Balken ''AB'' wird durch ein Moment ''M'' zwischen den beiden gelenkigen Lagern belastet. 
 
<onlyinclude>
[[Datei:EBB-load-case-05.png|alternativtext=|links|200px|Lageplan]]
Gesucht ist eine Lösung für die Biegelinie mit dem [[Randwertprobleme/Methoden zur Lösung von Randwertproblemen/Verfahren von Rayleigh-Ritz (EBB)|Ansatz von Ritz]] und zwei Trial-Funktionen.
</onlyinclude>
Im Vergleich zu [[Gelöste Aufgaben/UEBO|UEBO]], das die gleiche Aufgabenstellung hat - arbeiten wir hier mit Ansatzfunktionen in zwei Sektionen wie bei der FEM. Nur das Gleichgewichts-Prinzip bliebt das Gleicht: das [[Werkzeuge/Gleichgewichtsbedingungen/Arbeitsprinzipe der Analytischen Mechanik/Prinzip vom Minimum der Potentiellen Energie|Prinzip vom Minimum der Potentiellen Energie]].
 
== Lösung mit Maxima ==
 
Beim Verfahren von Ritz arbeiten wir mit
 
* dem [[Werkzeuge/Gleichgewichtsbedingungen/Arbeitsprinzipe der Analytischen Mechanik/Prinzip vom Minimum der Potentiellen Energie|Prinzip vom Minimum der Potentiellen Energie]].

Version vom 19. April 2021, 06:51 Uhr


Aufgabenstellung

Diese Problemstellung liefert einen Näherungsansatz für eine Standardlösung zum Euler-Bernoulli-Balken.

Der Euler-Bernoulli-Balken AB wird durch ein Moment M zwischen den beiden gelenkigen Lagern belastet. 


Lageplan

Gesucht ist eine Lösung für die Biegelinie mit dem Ansatz von Ritz und zwei Trial-Funktionen.

Im Vergleich zu UEBO, das die gleiche Aufgabenstellung hat - arbeiten wir hier mit Ansatzfunktionen in zwei Sektionen wie bei der FEM. Nur das Gleichgewichts-Prinzip bliebt das Gleicht: das Prinzip vom Minimum der Potentiellen Energie.

Lösung mit Maxima

Beim Verfahren von Ritz arbeiten wir mit