Gelöste Aufgaben/UEBJ: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 46: | Zeile 46: | ||
<!--------------------------------------------------------------------------------> | <!--------------------------------------------------------------------------------> | ||
{{MyCodeBlock|title= | {{MyCodeBlock|title=Header | ||
|text=Text | |text=Text | ||
|code= | |code= | ||
Zeile 54: | Zeile 54: | ||
}} | }} | ||
==tmp== | |||
<!--------------------------------------------------------------------------------> | |||
{{MyCodeBlock|title=Declarations | |||
|text=Text | |||
|code= | |||
<syntaxhighlight lang="lisp" line start=1> | |||
1+1 | |||
</syntaxhighlight> | |||
}} | |||
==tmp== | |||
<!--------------------------------------------------------------------------------> | |||
{{MyCodeBlock|title=Rayleigh-Ritz Approach | |||
|text=Text | |||
|code= | |||
<syntaxhighlight lang="lisp" line start=1> | |||
1+1 | |||
</syntaxhighlight> | |||
}} | |||
==tmp== | |||
<!--------------------------------------------------------------------------------> | |||
{{MyCodeBlock|title=Post-Processing | |||
|text=Text | |||
|code= | |||
<syntaxhighlight lang="lisp" line start=1> | |||
1+1 | |||
</syntaxhighlight> | |||
}} | |||
<hr /> | <hr /> |
Version vom 17. April 2021, 06:11 Uhr
Aufgabenstellung
Der Euler-Bernoulli-Balken AB wird durch seine Gewichtskraft belastet. Er ist in A fest eingespannt und hat eine konstante Breite b sowie eine zwischen A und B linear veränderliche Höhe h.
Für diese Aufgabe gibt es in UEBI eine analytische Lösung - hier schauen wir uns an, wie sich die Qualität der Näherungslösungen mit der Steigerung der Anzahl der Trial-Functions ändert.
Gesucht ist die Biegeline und Schnittkraftverläufe mit dem Ansatz von Ritz und mehreren Trial-Funktionen.
Gegeben sind für den Balken:
- Länge ℓ, Breite b,
- E-Modul E, Dichte ρ und
- die Höhe h0=b und h1 jeweils in A und B; dazwischen ist die Höhe linear veränderlich.
Lösung mit Maxima
Beim Verfahren von Ritz arbeiten wir mit
- dem Prinzip vom Minimum der Potentiellen Energie und
- Ansatzfunktionen über die gesamte Länge des Balkens.
Um die Lösung dimensionslos zu machen, nutzen wir die analytische Lösung des einseitig fest eingespannten Balkens mit konstanten I unter einer konstanten Streckenlast q0. Hier ist die maximale Auslenkung
.
Damit können wir uns die Lösungen dieses Problems als Vielfaches der analytischen Lösung eines ähnlichen Problems denken.
tmp
Header
Text
1+1
tmp
Declarations
Text
1+1
tmp
Rayleigh-Ritz Approach
Text
1+1
tmp
Post-Processing
Text
1+1
Links
- ...
Literature
- ...
h