Gelöste Aufgaben/Kw99: Unterschied zwischen den Versionen

Aus numpedia
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Zeile 12: Zeile 12:
<onlyinclude>
<onlyinclude>
[[Datei:Kw98-01.png|alternativtext=|links|mini|250x250px|Lageplan]]
[[Datei:Kw98-01.png|alternativtext=|links|mini|250x250px|Lageplan]]
Gesucht ist die analytische Lösung für den Euler-Bernoulli-Balken.
Gesucht ist die analytische Lösung für den Euler-Bernoulli-Balken. Im Vergleich zu [[Gelöste Aufgaben/Kw98|Kw98]] wird hier eine Lösung mit normierten Koordinaten versucht.
</onlyinclude>
</onlyinclude>
[[Datei:Kw98-02.png|mini|Systemparameter]]
[[Datei:Kw98-02.png|mini|Systemparameter]]
Zeile 186: Zeile 186:
<!-------------------------------------------------------------------------------->
<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Prepare for Solver
{{MyCodeBlock|title=Prepare for Solver
|text=
Das Gleichungssystem wollen wir als
::<math>\underline{\underline{A}}\cdot\underline{x}= \underline{b}</math>
schreiben, also
::<math>\begin{pmatrix}\frac{1}{{{\mathit{EI}}_{1}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & \frac{{{K}_{A}}}{{{\mathit{EI}}_{1}}} & -1 & 0 & 0 & 0 & 0 & 0\\ \frac{1}{{{\mathit{EI}}_{1}}} & \frac{{{\ell}_{{MyCodeBlock|title=Prepare for Solver
|text=
|text=
Das Gleichungssystem wollen wir als
Das Gleichungssystem wollen wir als

Version vom 31. März 2021, 12:22 Uhr


Aufgabenstellung

Ein Stab ABC ist durch eine lineare veränderliche Streckenlast q mit den Eckwerten qA in A und qB in B sowie dem Moment MB in B belastet. Der Stab (E-Modul: E) besteht aus zwei Sektionen mit den Längen l1 bzw. l2 sowie den Flächenmomenten I1 bzw. I2. Der Stab ist in A durch ein gelenkiges Festlager, in C durch eine Schiebehülse gelagert, in B sind die beiden Sektionen fest miteinander verbunden. Die Feder in A ist eine Drehfester mit Steifigkeit KA, die Federn in B und C sind Translationsfedern mit den Steifigkeiten kB, kC.


Lageplan

Gesucht ist die analytische Lösung für den Euler-Bernoulli-Balken. Im Vergleich zu Kw98 wird hier eine Lösung mit normierten Koordinaten versucht.

Systemparameter

Ermitteln Sie für ein Euler-Bernoulli-Modell die analytischen Verläufe der Schnittgrößen und Verschiebungen im Balken für diese Parameter:

Lösung mit Maxima

Die Aufgabe ist ein klassisches Randwertproblem:

  1. zwei Gebiete, in denen ein Euler-Bernoulli-Balken in AB und BC durch eine Streckenlast q belastet ist (in Bereich II ist die Streckenlast allerdings Null) und somit durch die Differentialbeziehung

    berschrieben wird.
  2. Rand- und Übergangsbedingungen in den Punkten A, B, C

Wir verwenden xi und ξi als Koordinaten je Bereich, in der Übersicht sieht das Randwertproblem so aus:

Rand
A
Bereich IÜbergang
B
Bereich IIRand
C


Header

Diese Aufgabe mit der Methode der Finiten Elemente in KW96 gelöst.


/*******************************************************/
/* MAXIMA script                                       */
/* version: wxMaxima 15.08.2                           */
/* author: Andreas Baumgart                            */
/* last updated: 2017-09-06                            */
/* ref: TM-C, Labor 1                                  */
/* description                                         */
/*                                                     */
/*******************************************************/




Declarations

Wir definieren die Parameter

.

und die Formfunktionen für die Streckenlast

.

/* system parameter */
units  : [mm = m/1000, cm = m/100];
params : [q[A]=3*N/mm, l[1]=700*mm, EI[1] = 2.1*10^11*N/m^2 * 3*cm*(4*cm)^3/12];
simple : [l[2] = 3/4*l[1], EI[2] = EI[1]/2,
          K[A]=2*EI[1]/l[1], k[C] = 512/229*EI[1]/l[1]^3, k[B] = EI[1]/l[1]^3, 
          q[B] = 4*q[A], M[B] = q[A]*l[1]^2];

params : append(params,makelist(lhs(simple[i])=subst(params,rhs(simple[i])),i,1,length(simple)));
params : subst(units,params);

/* form - functions  */
phi[0](xi) := 1 - xi;
phi[1](xi) :=     xi;




Formfunctions

In Bereich I und II gilt dieselbe Bewegungs-Differentialgleichung

,

die wir durch Integration lösen und dann bereichsweise anpassen.

So gilt für Bereich II: q0 = 0 und q1 = 0.

Die allgemeine Lösung ist mit

... für Bereich I:

... für Bereich II:

.

/* solve ....*/
dgl : EI[i]*diff(w(x),x,4) = q[0]*phi[0](x/l[i]) + q[1]*phi[1](x/l[i]);
/* generic solution */
displ : solve(integrate(integrate(integrate(integrate(dgl,x),x),x),x),w(x));
sections: [[i=1, %c4=C[1,0], %c3=C[1,1], %c2=C[1,2], %c1=C[1,3], q[0]=q[A], q[1]=q[B]],
           [i=2, %c4=C[2,0], %c3=C[2,1], %c2=C[2,2], %c1=C[2,3], q[0]= 0  , q[1]= 0  ]];

/* section I */
define(  w[1](x),  subst(sections[1],subst(displ,w(x))));
define(Phi[1](x),  diff(w[1](x),x  ));
define(  M[1](x), -EI[1]*diff(w[1](x),x,2));
define(  Q[1](x), -EI[1]*diff(w[1](x),x,3));

/* section II */
define(  w[2](x),  subst(sections[2],subst(displ,w(x))));
define(Phi[2](x),  diff(w[2](x),x  ));
define(  M[2](x), -EI[2]*diff(w[2](x),x,2));
define(  Q[2](x), -EI[2]*diff(w[2](x),x,3));




Boundary Conditions

Für die 2*4 = 8 Integrationskonstanten

suchen wir jetzt die passenden Gleichungen aus Rand- und Übergangsbedingungen.

Zur besseren Übersicht nennen wir die Schnitt-Momente und -Kräfte nach den jeweiligen Knotenpunkten A, B, C und fügen als Index ein + / - hinzu, um die Seite (+: rechts vom Knoten, -: links vom Knoten) zu kennzeichnen.

Aus Rand "A"

Geometrische Randbedingungen

Kraft- und Momenten-Randbedingungen

Aus Übergang "B"

Geometrische Randbedingungen

Kraft- und Momenten-Randbedingungen

Aus Rand "C"

Geometrische Randbedingungen

Kraft- und Momenten-Randbedingungen

Und das liefert das Gleichungssystem aus 8 Gleichungen

für die Integrationskonstanten.


1+1




Prepare for Solver

Das Gleichungssystem wollen wir als

schreiben, also

Fehler beim Parsen (Unbekannte Funktion „\begin{pmatrix}“): {\displaystyle \begin{pmatrix}\frac{1}{{{\mathit{EI}}_{1}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & \frac{{{K}_{A}}}{{{\mathit{EI}}_{1}}} & -1 & 0 & 0 & 0 & 0 & 0\\ \frac{1}{{{\mathit{EI}}_{1}}} & \frac{{{\ell}_{{MyCodeBlock|title=Prepare for Solver |text= Das Gleichungssystem wollen wir als ::<math>\underline{\underline{A}}\cdot\underline{x}= \underline{b}}

schreiben, also

Fehler beim Parsen (Unbekannte Funktion „\begin{pmatrix}“): {\displaystyle \begin{pmatrix}\frac{1}{{{\mathit{EI}}_{1}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & \frac{{{K}_{A}}}{{{\mathit{EI}}_{1}}} & -1 & 0 & 0 & 0 & 0 & 0\\ \frac{1}{{{\mathit{EI}}_{1}}} & \frac{{{\ell}_{{MyCodeBlock|title=Prepare for Solver |text= Das Gleichungssystem wollen wir als ::<math>\underline{\underline{A}}\cdot\underline{x}= \underline{b}}

schreiben, also

Die Matrix-Elemente sind für die Koeffizientenmatrix

und für die rechte Seite

.

/* augmented coeff matrix */
ACM: augcoefmatrix(BCs,ICs);
AA :   submatrix(ACM,9);
bb : - col(ACM,9);

for i: 1 thru 8 do
   print(simplode(["b[",i,"] = ", string(bb[i][1])]))$
for i: 1 thru 8 do
   for j: 1 thru 8 do
      if not AA[i][j] = 0 then
          print(simplode(["A[",i,",",j,"] = ", string(AA[i][j])]))$




Solving

Das Lösen des Gleichungssystems liefert

.

1+1




Post-Processing

Und die Ergebnisse können wir uns anschauen ...

... für w(x):

Biegelinie w(x)

... für Φ(x):

Kippung w'(x)

... für M(x):

Biegemoment M(x)

... für Q(x):

Querkraft Q(x)

... für die Lager-Reaktionskräfte:


/* bearing forces and moments */
reactForces: [A[z] = Q[1](0),
              M[A] = K[A]*Phi[1](0),
              B[z] = k[B]*w[2](0),
              C[z] = k[C]*w[2](1),
              M[C] = M[2](1)];

expand(subst(dimless,subst(params,subst(sol, reactForces))));

/* plot displacements */

fcts: [[ w [1](xi), w [2](xi)],
       [Phi[1](xi),Phi[2](xi)],
       [ M [1](xi), M [2](xi)],
       [ Q [1](xi), Q [2](xi)]];
facts: [1/l[Bez], l[1]/l[Bez], 1/(q[A]*l[1]^2), 1/(q[A]*l[1])];

textlabels : ["w(x)/(M[B]*l^2/EI[1])→", "w'(x)/(M[B]*l/EI[1])→", "M(x)/M[B]→", "Q(x)/(M[B]/l[1]→"];
for i: 1 thru 4 do(
  f : expand(subst(dimless,subst(params,facts[i]*[subst(sol, fcts[i][1]),
                                                  subst(sol, fcts[i][2])]))),
  r : subst(params,l[2]/l[1]),                                          
  preamble: if i<=2 then "set yrange [] reverse" else "set yrange []",
  plot2d([[parametric,     t, subst(t,xi,f[1]), [t,0,1]],
          [parametric, 1+r*t, subst(t,xi,f[2]), [t,0,1]]],
                             [legend, "sec. I", "sec. II"],
                             [gnuplot_preamble, preamble],
                             [xlabel, "x/l[1] ->"],
                             [ylabel, textlabels[i]]))$





Links

  • ...

Literature

  • ...