Zeile 186:
Zeile 186:
<!-------------------------------------------------------------------------------->
<!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Prepare for Solver
{{MyCodeBlock|title=Prepare for Solver
|text=
Das Gleichungssystem wollen wir als
::<math>\underline{\underline{A}}\cdot\underline{x}= \underline{b}</math>
schreiben, also
::<math>\begin{pmatrix}\frac{1}{{{\mathit{EI}}_{1}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & \frac{{{K}_{A}}}{{{\mathit{EI}}_{1}}} & -1 & 0 & 0 & 0 & 0 & 0\\ \frac{1}{{{\mathit{EI}}_{1}}} & \frac{{{\ell}_{{MyCodeBlock|title=Prepare for Solver
|text=
|text=
Das Gleichungssystem wollen wir als
Das Gleichungssystem wollen wir als
Zeile 231:
Zeile 239:
}}
}}
<!-------------------------------------------------------------------------------->
[[Datei:Kw99-21.png|rahmenlos]][[Datei:Kw99-22.png|rahmenlos]][[Datei:Kw99-23.png|rahmenlos]][[Datei:Kw99-24.png|rahmenlos]] <!-------------------------------------------------------------------------------->
{{MyCodeBlock|title=Post-Processing
{{MyCodeBlock|title=Post-Processing
|text=
|text=
Version vom 31. März 2021, 12:18 Uhr
Aufgabenstellung
Ein Stab ABC ist durch eine lineare veränderliche Streckenlast q mit den Eckwerten qA in A und qB in B sowie dem Moment MB in B belastet. Der Stab (E-Modul: E ) besteht aus zwei Sektionen mit den Längen l1 bzw. l2 sowie den Flächenmomenten I1 bzw. I2 . Der Stab ist in A durch ein gelenkiges Festlager, in C durch eine Schiebehülse gelagert, in B sind die beiden Sektionen fest miteinander verbunden. Die Feder in A ist eine Drehfester mit Steifigkeit KA , die Federn in B und C sind Translationsfedern mit den Steifigkeiten kB , kC .
Lageplan
Gesucht ist die analytische Lösung für den Euler-Bernoulli-Balken.
Systemparameter
Ermitteln Sie für ein Euler-Bernoulli-Modell die analytischen Verläufe der Schnittgrößen und Verschiebungen im Balken für diese Parameter:
Lösung mit Maxima
Die Aufgabe ist ein klassisches Randwertproblem:
zwei Gebiete, in denen ein Euler-Bernoulli-Balken in AB und BC durch eine Streckenlast q belastet ist (in Bereich II ist die Streckenlast allerdings Null) und somit durch die Differentialbeziehung
E
I
i
w
i
I
V
(
x
i
)
=
q
(
x
i
)
,
i
=
{
1
,
2
}
{\displaystyle E\;I_{i}w_{i}^{IV}(x_{i})=q(x_{i}),\;\;i=\{1,2\}}
berschrieben wird.
Rand- und Übergangsbedingungen in den Punkten A, B, C
Wir verwenden xi und ξi als Koordinaten je Bereich, in der Übersicht sieht das Randwertproblem so aus:
Rand A Bereich I Übergang B Bereich II Rand C
Diese Aufgabe mit der Methode der Finiten Elemente in KW96 gelöst.
/*******************************************************/
/* MAXIMA script */
/* version: wxMaxima 15.08.2 */
/* author: Andreas Baumgart */
/* last updated: 2017-09-06 */
/* ref: TM-C, Labor 1 */
/* description */
/* */
/*******************************************************/
Declarations
Wir definieren die Parameter
q
A
=
3
⋅
k
N
m
,
l
1
=
7
⋅
m
10
,
E
I
1
=
33600
N
m
2
,
l
2
=
21
m
40
,
E
I
2
=
16800
N
m
2
,
K
A
=
96
k
N
m
,
k
C
=
22
k
N
m
,
k
B
=
98
k
N
m
,
q
B
=
12
N
m
m
,
M
B
=
1470
N
m
{\displaystyle {\begin{array}{l}q_{A}={\frac {3\cdot kN}{m}},\\l_{1}={\frac {7\cdot m}{10}},\\EI_{1}=33600\;N\;{{m}^{2}},\\{{l}_{2}}={\frac {21\;m}{40}},\\EI_{2}=16800\;N\;{{m}^{2}},\\{{K}_{A}}=96\;kN\;m,\\{{k}_{C}}={\frac {22\;kN}{m}},\\{{k}_{B}}={\frac {98\;kN}{m}},\\{{q}_{B}}={\frac {12\;N}{mm}},\\{{M}_{B}}=1470\;Nm\end{array}}}
.
und die Formfunktionen für die Streckenlast
ϕ
0
(
ξ
)
:=
1
−
ξ
ϕ
1
(
ξ
)
:=
ξ
{\displaystyle {\begin{array}{l}{{\phi }_{0}}\left(\xi \right):=1-\xi \\{{\phi }_{1}}\left(\xi \right):=\xi \end{array}}}
.
/* system parameter */
units : [mm = m/1000, cm = m/100];
params : [q[A]=3*N/mm, l[1]=700*mm, EI[1] = 2.1*10^11*N/m^2 * 3*cm*(4*cm)^3/12];
simple : [l[2] = 3/4*l[1], EI[2] = EI[1]/2,
K[A]=2*EI[1]/l[1], k[C] = 512/229*EI[1]/l[1]^3, k[B] = EI[1]/l[1]^3,
q[B] = 4*q[A], M[B] = q[A]*l[1]^2];
params : append(params,makelist(lhs(simple[i])=subst(params,rhs(simple[i])),i,1,length(simple)));
params : subst(units,params);
/* form - functions */
phi[0](xi) := 1 - xi;
phi[1](xi) := xi;
Formfunctions
In Bereich I und II gilt dieselbe Bewegungs-Differentialgleichung
E
I
i
w
i
I
V
(
x
i
)
=
q
(
x
i
)
,
i
=
{
1
,
2
}
mit
q
(
x
i
)
=
q
0
⋅
ϕ
0
(
ξ
)
+
q
1
⋅
ϕ
1
(
ξ
)
{\displaystyle E\;I_{i}w_{i}^{IV}(x_{i})=q(x_{i}),\;\;i=\{1,2\}{\text{ mit }}q(x_{i})=q_{0}\cdot \phi _{0}(\xi )+q_{1}\cdot \phi _{1}(\xi )}
,
die wir durch Integration lösen und dann bereichsweise anpassen.
So gilt für Bereich II: q0 = 0 und q1 = 0 .
Die allgemeine Lösung ist mit
ϕ
i
(
x
)
=
d
w
(
x
)
d
x
{\displaystyle \displaystyle \phi _{i}(x)={\frac {dw(x)}{dx}}}
... für Bereich I:
w
1
(
x
)
:=
120
⋅
l
1
⋅
C
1
,
0
+
120
⋅
l
1
⋅
C
1
,
1
⋅
x
+
60
⋅
l
1
⋅
C
1
,
2
⋅
x
2
+
20
⋅
l
1
⋅
C
1
,
3
⋅
x
3
+
5
⋅
l
1
⋅
x
4
⋅
q
A
+
x
5
⋅
(
q
B
−
q
A
)
120
⋅
l
1
⋅
E
I
1
ϕ
1
(
x
)
:=
120
⋅
l
1
⋅
C
1
,
1
+
120
⋅
l
1
⋅
C
1
,
2
⋅
x
+
60
⋅
l
1
⋅
C
1
,
3
⋅
x
2
+
20
⋅
l
1
⋅
x
3
⋅
q
A
+
5
⋅
x
4
⋅
(
q
B
−
q
A
)
120
⋅
l
1
⋅
E
I
1
M
1
(
x
)
:=
−
120
⋅
l
1
⋅
C
1
,
2
+
120
⋅
l
1
⋅
C
1
,
3
⋅
x
+
60
⋅
l
1
⋅
x
2
⋅
q
A
+
20
⋅
x
3
⋅
(
q
B
−
q
A
)
120
⋅
l
1
Q
1
(
x
)
:=
−
120
⋅
l
1
⋅
C
1
,
3
+
120
⋅
l
1
⋅
x
⋅
q
A
+
60
⋅
x
2
⋅
(
q
B
−
q
A
)
120
⋅
l
1
{\displaystyle {\begin{array}{l}{{w}_{1}}\left(x\right):={\frac {120\cdot {{l}_{1}}\cdot {{C}_{1,0}}+120\cdot {{l}_{1}}\cdot {{C}_{1,1}}\cdot x+60\cdot {{l}_{1}}\cdot {{C}_{1,2}}\cdot {{x}^{2}}+20\cdot {{l}_{1}}\cdot {{C}_{1,3}}\cdot {{x}^{3}}+5\cdot {{l}_{1}}\cdot {{x}^{4}}\cdot {{q}_{A}}+{{x}^{5}}\cdot \left({{q}_{B}}-{{q}_{A}}\right)}{120\cdot {{l}_{1}}\cdot {{\mathit {EI}}_{1}}}}\\{{\phi }_{1}}\left(x\right):={\frac {120\cdot {{l}_{1}}\cdot {{C}_{1,1}}+120\cdot {{l}_{1}}\cdot {{C}_{1,2}}\cdot x+60\cdot {{l}_{1}}\cdot {{C}_{1,3}}\cdot {{x}^{2}}+20\cdot {{l}_{1}}\cdot {{x}^{3}}\cdot {{q}_{A}}+5\cdot {{x}^{4}}\cdot \left({{q}_{B}}-{{q}_{A}}\right)}{120\cdot {{l}_{1}}\cdot {{\mathit {EI}}_{1}}}}\\{{M}_{1}}\left(x\right):=-{\frac {120\cdot {{l}_{1}}\cdot {{C}_{1,2}}+120\cdot {{l}_{1}}\cdot {{C}_{1,3}}\cdot x+60\cdot {{l}_{1}}\cdot {{x}^{2}}\cdot {{q}_{A}}+20\cdot {{x}^{3}}\cdot \left({{q}_{B}}-{{q}_{A}}\right)}{120\cdot {{l}_{1}}}}\\{{Q}_{1}}\left(x\right):=-{\frac {120\cdot {{l}_{1}}\cdot {{C}_{1,3}}+120\cdot {{l}_{1}}\cdot x\cdot {{q}_{A}}+60\cdot {{x}^{2}}\cdot \left({{q}_{B}}-{{q}_{A}}\right)}{120\cdot {{l}_{1}}}}\end{array}}}
... für Bereich II:
w
2
(
x
)
:=
120
⋅
l
2
⋅
C
2
,
0
+
120
⋅
l
2
⋅
C
2
,
1
⋅
x
+
60
⋅
l
2
⋅
C
2
,
2
⋅
x
2
+
20
⋅
l
2
⋅
C
2
,
3
⋅
x
3
120
⋅
l
2
⋅
E
I
2
ϕ
2
(
x
)
:=
120
⋅
l
2
⋅
C
2
,
1
+
120
⋅
l
2
⋅
C
2
,
2
⋅
x
+
60
⋅
l
2
⋅
C
2
,
3
⋅
x
2
120
⋅
l
2
⋅
E
I
2
M
2
(
x
)
:=
−
120
⋅
l
2
⋅
C
2
,
2
+
120
⋅
l
2
⋅
C
2
,
3
⋅
x
120
⋅
l
2
Q
2
(
x
)
:=
−
C
2
,
3
{\displaystyle {\begin{array}{l}{{w}_{2}}\left(x\right):={\frac {120\cdot {{l}_{2}}\cdot {{C}_{2,0}}+120\cdot {{l}_{2}}\cdot {{C}_{2,1}}\cdot x+60\cdot {{l}_{2}}\cdot {{C}_{2,2}}\cdot {{x}^{2}}+20\cdot {{l}_{2}}\cdot {{C}_{2,3}}\cdot {{x}^{3}}}{120\cdot {{l}_{2}}\cdot {{\mathit {EI}}_{2}}}}\\{{\phi }_{2}}\left(x\right):={\frac {120\cdot {{l}_{2}}\cdot {{C}_{2,1}}+120\cdot {{l}_{2}}\cdot {{C}_{2,2}}\cdot x+60\cdot {{l}_{2}}\cdot {{C}_{2,3}}\cdot {{x}^{2}}}{120\cdot {{l}_{2}}\cdot {{\mathit {EI}}_{2}}}}\\{{M}_{2}}\left(x\right):=-{\frac {120\cdot {{l}_{2}}\cdot {{C}_{2,2}}+120\cdot {{l}_{2}}\cdot {{C}_{2,3}}\cdot x}{120\cdot {{l}_{2}}}}\\{{Q}_{2}}\left(x\right):=-{{C}_{2,3}}\end{array}}}
.
/* solve ....*/
dgl : EI[i]*diff(w(x),x,4) = q[0]*phi[0](x/l[i]) + q[1]*phi[1](x/l[i]);
/* generic solution */
displ : solve(integrate(integrate(integrate(integrate(dgl,x),x),x),x),w(x));
sections: [[i=1, %c4=C[1,0], %c3=C[1,1], %c2=C[1,2], %c1=C[1,3], q[0]=q[A], q[1]=q[B]],
[i=2, %c4=C[2,0], %c3=C[2,1], %c2=C[2,2], %c1=C[2,3], q[0]= 0 , q[1]= 0 ]];
/* section I */
define( w[1](x), subst(sections[1],subst(displ,w(x))));
define(Phi[1](x), diff(w[1](x),x ));
define( M[1](x), -EI[1]*diff(w[1](x),x,2));
define( Q[1](x), -EI[1]*diff(w[1](x),x,3));
/* section II */
define( w[2](x), subst(sections[2],subst(displ,w(x))));
define(Phi[2](x), diff(w[2](x),x ));
define( M[2](x), -EI[2]*diff(w[2](x),x,2));
define( Q[2](x), -EI[2]*diff(w[2](x),x,3));
Boundary Conditions
Für die 2*4 = 8 Integrationskonstanten
[
C
1
,
0
,
C
1
,
1
,
C
1
,
2
,
C
1
,
3
,
C
2
,
0
,
C
2
,
1
,
C
2
,
2
,
C
2
,
3
]
{\displaystyle \left[C_{1,0},C_{1,1},C_{1,2},C_{1,3},C_{2,0},C_{2,1},C_{2,2},C_{2,3}\right]}
suchen wir jetzt die passenden Gleichungen aus Rand- und Übergangsbedingungen.
Zur besseren Übersicht nennen wir die Schnitt-Momente und -Kräfte nach den jeweiligen Knotenpunkten A, B, C und fügen als Index ein + / - hinzu, um die Seite (+: rechts vom Knoten, -: links vom Knoten) zu kennzeichnen.
Aus Rand "A"
Aus Übergang "B"
Aus Rand "C"
Und das liefert das Gleichungssystem aus 8 Gleichungen
(
C
1
,
0
E
I
1
=
0
C
1
,
1
⋅
K
A
E
I
1
−
C
1
,
2
=
0
ℓ
1
4
⋅
q
B
120
⋅
E
I
1
+
ℓ
1
4
⋅
q
A
30
⋅
E
I
1
+
ℓ
1
3
⋅
C
1
,
3
6
⋅
E
I
1
+
ℓ
1
2
⋅
C
1
,
2
2
⋅
E
I
1
+
ℓ
1
⋅
C
1
,
1
E
I
1
+
C
1
,
0
E
I
1
=
C
2
,
0
E
I
2
ℓ
1
3
⋅
q
B
24
⋅
E
I
1
+
ℓ
1
3
⋅
q
A
8
⋅
E
I
1
+
ℓ
1
2
⋅
C
1
,
3
2
⋅
E
I
1
+
ℓ
1
⋅
C
1
,
2
E
I
1
+
C
1
,
1
E
I
1
=
C
2
,
1
E
I
2
ℓ
1
⋅
q
B
2
−
C
2
,
0
⋅
k
B
E
I
2
+
ℓ
1
⋅
q
A
2
−
C
2
,
3
+
C
1
,
3
=
0
−
M
B
+
ℓ
1
2
⋅
q
B
6
+
ℓ
1
2
⋅
q
A
3
−
C
2
,
2
+
ℓ
1
⋅
C
1
,
3
+
C
1
,
2
=
0
ℓ
2
2
⋅
C
2
,
3
2
⋅
E
I
2
+
ℓ
2
⋅
C
2
,
2
E
I
2
+
C
2
,
1
E
I
2
=
0
−
ℓ
2
3
⋅
C
2
,
3
⋅
k
C
6
⋅
E
I
2
−
ℓ
2
2
⋅
C
2
,
2
⋅
k
C
2
⋅
E
I
2
−
ℓ
2
⋅
C
2
,
1
⋅
k
C
E
I
2
−
C
2
,
0
⋅
k
C
E
I
2
+
C
2
,
3
=
0
)
{\displaystyle {\begin{pmatrix}{\frac {{C}_{1,0}}{{\mathit {EI}}_{1}}}=0\\{\frac {{{C}_{1,1}}\cdot {{K}_{A}}}{{\mathit {EI}}_{1}}}-{{C}_{1,2}}=0\\{\frac {{{\ell }_{1}^{4}}\cdot {{q}_{B}}}{120\cdot {{\mathit {EI}}_{1}}}}+{\frac {{{\ell }_{1}^{4}}\cdot {{q}_{A}}}{30\cdot {{\mathit {EI}}_{1}}}}+{\frac {{{\ell }_{1}^{3}}\cdot {{C}_{1,3}}}{6\cdot {{\mathit {EI}}_{1}}}}+{\frac {{{\ell }_{1}^{2}}\cdot {{C}_{1,2}}}{2\cdot {{\mathit {EI}}_{1}}}}+{\frac {{{\ell }_{1}}\cdot {{C}_{1,1}}}{{\mathit {EI}}_{1}}}+{\frac {{C}_{1,0}}{{\mathit {EI}}_{1}}}={\frac {{C}_{2,0}}{{\mathit {EI}}_{2}}}\\{\frac {{{\ell }_{1}^{3}}\cdot {{q}_{B}}}{24\cdot {{\mathit {EI}}_{1}}}}+{\frac {{{\ell }_{1}^{3}}\cdot {{q}_{A}}}{8\cdot {{\mathit {EI}}_{1}}}}+{\frac {{{\ell }_{1}^{2}}\cdot {{C}_{1,3}}}{2\cdot {{\mathit {EI}}_{1}}}}+{\frac {{{\ell }_{1}}\cdot {{C}_{1,2}}}{{\mathit {EI}}_{1}}}+{\frac {{C}_{1,1}}{{\mathit {EI}}_{1}}}={\frac {{C}_{2,1}}{{\mathit {EI}}_{2}}}\\{\frac {{{\ell }_{1}}\cdot {{q}_{B}}}{2}}-{\frac {{{C}_{2,0}}\cdot {{k}_{B}}}{{\mathit {EI}}_{2}}}+{\frac {{{\ell }_{1}}\cdot {{q}_{A}}}{2}}-{{C}_{2,3}}+{{C}_{1,3}}=0\\-{{M}_{B}}+{\frac {{{\ell }_{1}^{2}}\cdot {{q}_{B}}}{6}}+{\frac {{{\ell }_{1}^{2}}\cdot {{q}_{A}}}{3}}-{{C}_{2,2}}+{{\ell }_{1}}\cdot {{C}_{1,3}}+{{C}_{1,2}}=0\\{\frac {{{\ell }_{2}^{2}}\cdot {{C}_{2,3}}}{2\cdot {{\mathit {EI}}_{2}}}}+{\frac {{{\ell }_{2}}\cdot {{C}_{2,2}}}{{\mathit {EI}}_{2}}}+{\frac {{C}_{2,1}}{{\mathit {EI}}_{2}}}=0\\-{\frac {{{\ell }_{2}^{3}}\cdot {{C}_{2,3}}\cdot {{k}_{C}}}{6\cdot {{\mathit {EI}}_{2}}}}-{\frac {{{\ell }_{2}^{2}}\cdot {{C}_{2,2}}\cdot {{k}_{C}}}{2\cdot {{\mathit {EI}}_{2}}}}-{\frac {{{\ell }_{2}}\cdot {{C}_{2,1}}\cdot {{k}_{C}}}{{\mathit {EI}}_{2}}}-{\frac {{{C}_{2,0}}\cdot {{k}_{C}}}{{\mathit {EI}}_{2}}}+{{C}_{2,3}}=0\end{pmatrix}}}
für die Integrationskonstanten.
Prepare for Solver
Das Gleichungssystem wollen wir als
A
_
_
⋅
x
_
=
b
_
{\displaystyle {\underline {\underline {A}}}\cdot {\underline {x}}={\underline {b}}}
schreiben, also
Fehler beim Parsen (Unbekannte Funktion „\begin{pmatrix}“): {\displaystyle \begin{pmatrix}\frac{1}{{{\mathit{EI}}_{1}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & \frac{{{K}_{A}}}{{{\mathit{EI}}_{1}}} & -1 & 0 & 0 & 0 & 0 & 0\\ \frac{1}{{{\mathit{EI}}_{1}}} & \frac{{{\ell}_{{MyCodeBlock|title=Prepare for Solver |text= Das Gleichungssystem wollen wir als ::<math>\underline{\underline{A}}\cdot\underline{x}= \underline{b}}
schreiben, also
(
1
E
I
1
0
0
0
0
0
0
0
0
K
A
E
I
1
−
1
0
0
0
0
0
1
E
I
1
ℓ
1
E
I
1
ℓ
1
2
2
⋅
E
I
1
ℓ
1
3
6
⋅
E
I
1
−
1
E
I
2
0
0
0
0
1
E
I
1
ℓ
1
E
I
1
ℓ
1
2
2
⋅
E
I
1
0
−
1
E
I
2
0
0
0
0
0
1
−
k
B
E
I
2
0
0
−
1
0
0
1
ℓ
1
0
0
−
1
0
0
0
0
0
0
1
E
I
2
ℓ
2
E
I
2
ℓ
2
2
2
⋅
E
I
2
0
0
0
0
−
k
C
E
I
2
−
ℓ
2
⋅
k
C
E
I
2
−
ℓ
2
2
⋅
k
C
2
⋅
E
I
2
−
ℓ
2
3
⋅
k
C
−
6
⋅
E
I
2
6
⋅
E
I
2
)
⋅
x
_
=
(
0
0
−
ℓ
1
4
⋅
q
B
120
⋅
E
I
1
−
ℓ
1
4
⋅
q
A
30
⋅
E
I
1
−
ℓ
1
3
⋅
q
B
24
⋅
E
I
1
−
ℓ
1
3
⋅
q
A
8
⋅
E
I
1
−
ℓ
1
⋅
q
B
2
−
ℓ
1
⋅
q
A
2
M
B
−
ℓ
1
2
⋅
q
B
6
−
ℓ
1
2
⋅
q
A
3
0
0
)
{\displaystyle {\begin{pmatrix}{\frac {1}{{\mathit {EI}}_{1}}}&0&0&0&0&0&0&0\\0&{\frac {{K}_{A}}{{\mathit {EI}}_{1}}}&-1&0&0&0&0&0\\{\frac {1}{{\mathit {EI}}_{1}}}&{\frac {{\ell }_{1}}{{\mathit {EI}}_{1}}}&{\frac {{\ell }_{1}^{2}}{2\cdot {{\mathit {EI}}_{1}}}}&{\frac {{\ell }_{1}^{3}}{6\cdot {{\mathit {EI}}_{1}}}}&-{\frac {1}{{\mathit {EI}}_{2}}}&0&0&0\\0&{\frac {1}{{\mathit {EI}}_{1}}}&{\frac {{\ell }_{1}}{{\mathit {EI}}_{1}}}&{\frac {{\ell }_{1}^{2}}{2\cdot {{\mathit {EI}}_{1}}}}&0&-{\frac {1}{{\mathit {EI}}_{2}}}&0&0\\0&0&0&1&-{\frac {{k}_{B}}{{\mathit {EI}}_{2}}}&0&0&-1\\0&0&1&{{\ell }_{1}}&0&0&-1&0\\0&0&0&0&0&{\frac {1}{{\mathit {EI}}_{2}}}&{\frac {{\ell }_{2}}{{\mathit {EI}}_{2}}}&{\frac {{\ell }_{2}^{2}}{2\cdot {{\mathit {EI}}_{2}}}}\\0&0&0&0&-{\frac {{k}_{C}}{{\mathit {EI}}_{2}}}&-{\frac {{{\ell }_{2}}\cdot {{k}_{C}}}{{\mathit {EI}}_{2}}}&-{\frac {{{\ell }_{2}^{2}}\cdot {{k}_{C}}}{2\cdot {{\mathit {EI}}_{2}}}}&-{\frac {{{\ell }_{2}^{3}}\cdot {{k}_{C}}-6\cdot {{\mathit {EI}}_{2}}}{6\cdot {{\mathit {EI}}_{2}}}}\end{pmatrix}}\cdot {\underline {x}}={\begin{pmatrix}0\\0\\-{\frac {{{\ell }_{1}^{4}}\cdot {{q}_{B}}}{120\cdot {{\mathit {EI}}_{1}}}}-{\frac {{{\ell }_{1}^{4}}\cdot {{q}_{A}}}{30\cdot {{\mathit {EI}}_{1}}}}\\-{\frac {{{\ell }_{1}^{3}}\cdot {{q}_{B}}}{24\cdot {{\mathit {EI}}_{1}}}}-{\frac {{{\ell }_{1}^{3}}\cdot {{q}_{A}}}{8\cdot {{\mathit {EI}}_{1}}}}\\-{\frac {{{\ell }_{1}}\cdot {{q}_{B}}}{2}}-{\frac {{{\ell }_{1}}\cdot {{q}_{A}}}{2}}\\{{M}_{B}}-{\frac {{{\ell }_{1}^{2}}\cdot {{q}_{B}}}{6}}-{\frac {{{\ell }_{1}^{2}}\cdot {{q}_{A}}}{3}}\\0\\0\end{pmatrix}}}
Die Matrix-Elemente sind für die Koeffizientenmatrix
a
1
,
1
=
1
/
E
I
1
a
2
,
2
=
K
A
/
E
I
1
a
2
,
3
=
−
1
a
3
,
1
=
1
/
E
I
1
a
3
,
2
=
ℓ
1
/
E
I
1
a
3
,
3
=
ℓ
1
2
/
(
2
⋅
E
I
1
)
a
3
,
4
=
ℓ
1
3
/
(
6
⋅
E
I
1
)
a
3
,
5
=
−
1
/
E
I
2
a
4
,
2
=
1
/
E
I
1
a
4
,
3
=
ℓ
1
/
E
I
1
a
4
,
4
=
ℓ
1
2
/
(
2
⋅
E
I
1
)
a
4
,
6
=
−
1
/
E
I
2
a
5
,
4
=
1
a
5
,
5
=
−
k
B
/
E
I
2
a
5
,
8
=
−
1
a
6
,
3
=
1
a
6
,
4
=
ℓ
1
a
6
,
7
=
−
1
a
7
,
6
=
1
/
E
I
2
a
7
,
7
=
ℓ
2
/
E
I
2
a
7
,
8
=
ℓ
2
2
/
(
2
⋅
E
I
2
)
a
8
,
5
=
−
k
C
/
E
I
2
a
8
,
6
=
−
(
ℓ
2
⋅
k
C
)
/
E
I
2
a
8
,
7
=
−
(
ℓ
2
2
⋅
k
C
)
/
(
2
⋅
E
I
2
)
a
8
,
8
=
−
(
ℓ
2
3
⋅
k
C
−
6
⋅
E
I
2
)
/
(
6
⋅
E
I
2
)
{\displaystyle {\begin{array}{l}a_{1,1}=1/EI_{1}\\a_{2,2}=K_{A}/EI_{1}\\a_{2,3}=-1\\a_{3,1}=1/EI_{1}\\a_{3,2}=\ell _{1}/EI_{1}\\a_{3,3}=\ell _{1}^{2}/(2\cdot EI_{1})\\a_{3,4}=\ell _{1}^{3}/(6\cdot EI_{1})\\a_{3,5}=-1/EI_{2}\\a_{4,2}=1/EI_{1}\\a_{4,3}=\ell _{1}/EI_{1}\\a_{4,4}=\ell _{1}^{2}/(2\cdot EI_{1})\\a_{4,6}=-1/EI_{2}\\a_{5,4}=1\\a_{5,5}=-k_{B}/EI_{2}\\a_{5,8}=-1\\a_{6,3}=1\\a_{6,4}=\ell _{1}\\a_{6,7}=-1\\a_{7,6}=1/EI_{2}\\a_{7,7}=\ell _{2}/EI_{2}\\a_{7,8}=\ell _{2}^{2}/(2\cdot EI_{2})\\a_{8,5}=-k_{C}/EI_{2}\\a_{8,6}=-(\ell _{2}\cdot k_{C})/EI_{2}\\a_{8,7}=-(\ell _{2}^{2}\cdot k_{C})/(2\cdot EI_{2})\\a_{8,8}=-(\ell _{2}^{3}\cdot k_{C}-6\cdot EI_{2})/(6\cdot EI_{2})\\\end{array}}}
und für die rechte Seite
b
1
=
0
b
2
=
0
b
3
=
(
−
(
ℓ
1
4
⋅
q
B
)
/
(
120
⋅
E
I
1
)
)
−
(
ℓ
1
4
⋅
q
A
)
/
(
30
⋅
E
I
1
)
b
4
=
(
−
(
ℓ
1
3
⋅
q
B
)
/
(
24
⋅
E
I
1
)
)
−
(
ℓ
1
3
⋅
q
A
)
/
(
8
⋅
E
I
1
)
b
5
=
(
−
(
ℓ
1
⋅
q
B
)
/
2
)
−
(
ℓ
1
⋅
q
A
)
/
2
b
6
=
M
B
−
(
ℓ
1
2
⋅
q
B
)
/
6
−
(
ℓ
1
2
⋅
q
A
)
/
3
b
7
=
0
b
8
=
0
{\displaystyle {\begin{array}{l}b_{1}=0\\b_{2}=0\\b_{3}=(-(\ell _{1}^{4}\cdot q_{B})/(120\cdot EI_{1}))-(\ell _{1}^{4}\cdot q_{A})/(30\cdot EI_{1})\\b_{4}=(-(\ell _{1}^{3}\cdot q_{B})/(24\cdot EI_{1}))-(\ell _{1}^{3}\cdot q_{A})/(8\cdot EI_{1})\\b_{5}=(-(\ell _{1}\cdot q_{B})/2)-(\ell _{1}\cdot q_{A})/2\\b_{6}=M_{B}-(\ell _{1}^{2}\cdot q_{B})/6-(\ell _{1}^{2}\cdot q_{A})/3\\b_{7}=0\\b_{8}=0\end{array}}}
.
/* augmented coeff matrix */
ACM: augcoefmatrix(BCs,ICs);
AA : submatrix(ACM,9);
bb : - col(ACM,9);
for i: 1 thru 8 do
print(simplode(["b[",i,"] = ", string(bb[i][1])]))$
for i: 1 thru 8 do
for j: 1 thru 8 do
if not AA[i][j] = 0 then
print(simplode(["A[",i,",",j,"] = ", string(AA[i][j])]))$
Solving
Das Lösen des Gleichungssystems liefert
C
1
,
0
=
0
,
C
1
,
1
=
246.1
N
m
2
,
C
1
,
2
=
703.2
N
m
,
C
1
,
3
=
−
2404.3
N
,
C
2
,
0
=
127.6
N
m
3
,
C
2
,
1
=
224.7
N
m
2
,
C
2
,
2
=
−
979.8
N
m
,
C
2
,
3
=
2101.8
N
{\displaystyle {\begin{array}{l}{{C}_{1,0}}=0,\\{{C}_{1,1}}=246.1\;N{{m}^{2}},\\{{C}_{1,2}}=703.2\;Nm,\\{{C}_{1,3}}=-2404.3\;N,\\{{C}_{2,0}}=127.6\;Nm^{3},\\{{C}_{2,1}}=224.7\;Nm^{2},\\{{C}_{2,2}}=-979.8\;Nm,\\{{C}_{2,3}}=2101.8N\end{array}}}
.
Post-Processing
Und die Ergebnisse können wir uns anschauen ...
... für w(x):
Biegelinie w(x)
... für Φ(x) :
Kippung w'(x)
... für M(x):
Biegemoment M(x)
... für Q(x):
Querkraft Q(x)
... für die Lager-Reaktionskräfte:
A
z
=
2404.3
N
,
M
A
=
703.2
N
m
,
B
z
=
743.9
N
,
C
z
=
2101.8
N
,
M
C
=
−
123.7
N
m
{\displaystyle {\begin{array}{l}{{A}_{z}}=2404.3N,\\{{M}_{A}}=703.2Nm,\\{{B}_{z}}=743.9N,\\{{C}_{z}}=2101.8N,\\{{M}_{C}}=-123.7Nm\end{array}}}
/* bearing forces and moments */
reactForces: [A[z]=Q[1](0),
M[A] = K[A]*Phi[1](0),
B[z] = k[B]*w[2](0),
C[z] = k[C]*w[2](l[2]),
M[C] = M[2](l[2])];
expand(subst(params,subst(sol, reactForces)));
/* plot displacements */
fcts: [[ w [1](x), w [2](x-l[1])],
[Phi[1](x),Phi[2](x-l[1])],
[ M [1](x), M [2](x-l[1])],
[ Q [1](x), Q [2](x-l[1])]];
facts: [EI[1]/(l[1]^4*q[A]),EI[1]/(l[1]^3*q[A]),1/(l[1]^2*q[A]),1/(l[1]^1*q[A])];
subst(M[B]/l[1]^2,q[A],facts);
textlabels : ["w(x)/(M[B]*l^2/EI[1])→", "w'(x)/(M[B]*l/EI[1])→", "M(x)/M[B]→", "Q(x)/(M[B]/l[1]→"];
for i: 1 thru 4 do(
f : expand(subst(simple,subst(xi*l[1],x,facts[i]*[subst(sol, fcts[i][1]),
subst(sol, fcts[i][2])]))),
f1 : f[1], f2 : f[2],
toplot : [if xi<=1 then f1 else 0,
if xi < 1 then 0 else f2],
plot2d(toplot,[xi,0,1+subst(simple,l[2]/l[1])], [legend, "sec. I", "sec. II"],
[gnuplot_preamble, "set yrange [] reverse"] ,
[xlabel, "x/l[1] ->"],
[ylabel, textlabels[i]]))$
Links
Literature